如圖1,Rt△ABC兩直角邊的邊長(zhǎng)為AC=3,BC=4.
(1)如圖2,⊙O與Rt△ABC的邊AB相切于點(diǎn)X,與邊BC相切于點(diǎn)Y.請(qǐng)你在圖2中作出并標(biāo)明⊙O的圓心(用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)P是這個(gè)Rt△ABC上和其內(nèi)部的動(dòng)點(diǎn),以P為圓心的⊙P與Rt△ABC的兩條邊相切.設(shè)⊙P的面積為S,你認(rèn)為能否確定S的最大值?若能,請(qǐng)你求出S的最大值;若不能,請(qǐng)你說明不能確定S的最大值的理由.
(1)作圖見解析;(2).
【解析】
試題分析:(1)作出∠B的角平分線BD,再過X作OX⊥AB,交BD于點(diǎn)O,則O點(diǎn)即為⊙O的圓心;
(2)由于⊙P與△ABC哪兩條邊相切不能確定,故應(yīng)分⊙P與Rt△ABC的邊AB和BC相切;⊙P與Rt△ABC的邊AB和AC相切時(shí);⊙P與Rt△ABC的邊BC和AC相切時(shí)三種情況進(jìn)行討論.
試題解析:(1)如圖所示:
①以B為圓心,以任意長(zhǎng)為半徑畫圓,分別交BC、AB于點(diǎn)G、H;②分別以G、H為圓心,以大于GH為半徑畫圓,兩圓相交于D,連接BD;③過X作OX⊥AB,交直線BD于點(diǎn)O,則點(diǎn)O即為⊙O的圓心.
(2)①當(dāng)⊙P與Rt△ABC的邊AB和BC相切時(shí),由角平分線的性質(zhì)可知,動(dòng)點(diǎn)P是∠ABC的平分線BM上的點(diǎn),如圖1,在∠ABC的平分線BM上任意確定點(diǎn)P1(不為∠ABC的頂點(diǎn))
∵OX=BOsin∠ABM,P1Z=BPsin∠ABM,當(dāng)BP1>BO時(shí),P1Z>OX即P與B的距離越大,⊙P的面積越大,這時(shí),BM與AC的交點(diǎn)P是符合題意的、BP長(zhǎng)度最大的點(diǎn); 如圖2,
∵∠BPA>90°,過點(diǎn)P作PE⊥AB,垂足為E,則E在邊AB上,
∴以P為圓心、PC為半徑作圓,則⊙P與CB相切于C,與邊AB相切于E,即這時(shí)⊙P是符合題意的圓,
時(shí)⊙P的面積就是S的最大值,
∵AC=1,BC=2,∴AB=,
設(shè)PC=x,則PA=AC-PC=1-x
在直角△APE中,PA2=PE2+AE2,
∴(1-x)2=x2+(-2)2,
∴x=2-4;
②如圖3,
同理可得:當(dāng)⊙P與Rt△ABC的邊AB和AC相切時(shí),設(shè)PC=y,則(2-y)2=y2+(-1)2,
∴y=;
③如圖4,
同理可得,當(dāng)⊙P與Rt△ABC的邊BC和AC相切時(shí),設(shè)PF=z,
∵△APF∽△PBE,
∴PF:BE=AF:PE,
∴,
∴z=.
由①、②、③可知,
>>
∴z>y>x,
∴⊙P的面積S的最大值為π.
考點(diǎn):1. 切線的性質(zhì);2.角平分線的性質(zhì);3.勾股定理;4.作圖—復(fù)雜作圖.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| ||
2 |
AC |
CM |
BC |
CA |
CM |
AB |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2
| ||
π |
2
| ||
π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com