【題目】如圖,函數(shù)y= 和y= - x+4的圖像交點(diǎn)為A、B,原點(diǎn)為O,求△AOB面積.
【答案】8
【解析】整體分析:
聯(lián)立方程y= 和y= - x+4,求出點(diǎn)A,B的坐標(biāo),然后由公式△OAB的面積=×(x1- x2)(y2- y1)求解.
解:把y=代入y= - x+4得,
= - x+4,
解得x1=2+,x2=2-.
所以y1=2-,y2=2+.
則A(2-,2+),B(2+,2-),
所以△OAB的面積=×(x1- x2)(y2- y1)==×4×4=.
【題型】解答題
【結(jié)束】
19
【題目】如圖,直線與雙曲線相交于A(2,1)、B兩點(diǎn).
(1)求m及k的值;
(2)不解關(guān)于x、y的方程組直接寫(xiě)出點(diǎn)B的坐標(biāo);
(3)直線經(jīng)過(guò)點(diǎn)B嗎?請(qǐng)說(shuō)明理由.
【答案】(1)m=-1,k=2;(2)(-1,-2);(3)經(jīng)過(guò)
【解析】試題分析:(1)把A(2,1)分別代入直線與雙曲線即可求得結(jié)果;
(2)根據(jù)函數(shù)圖象的特征寫(xiě)出兩個(gè)圖象的交點(diǎn)坐標(biāo)即可;
(3)把x=-1,m=-1代入即可求得y的值,從而作出判斷.
(1)把A(2,1)分別代入直線與雙曲線的解析式得m=-1,k=2;
(2)由題意得B的坐標(biāo)(-1,-2);
(3)當(dāng)x=-1,m=-1代入得y=-2×(-1)+4×(-1)=2-4=-2
所以直線經(jīng)過(guò)點(diǎn)B(-1,-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的方格中,填入相應(yīng)的數(shù)字,使它符合下列語(yǔ)句的要求:
(1)5的正上方是一個(gè)負(fù)整數(shù);
(2)5的左上方是一個(gè)正分?jǐn)?shù);
(3)一個(gè)既不是正數(shù)也不是負(fù)數(shù)的數(shù)在5的正下方;
(4)5的左邊是一個(gè)負(fù)分?jǐn)?shù);
(5)剩下的四格請(qǐng)分別填上正數(shù)和負(fù)數(shù)使方格中正數(shù)與負(fù)數(shù)的個(gè)數(shù)相同.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【題目】如圖,兩個(gè)反比例函數(shù)C1:y=和C2:y=在第一象限內(nèi)的圖象如圖,P在C1上作PC、PD垂直于坐標(biāo)軸,垂線與C2交點(diǎn)為A、B,則下列結(jié)論,其中正確的是( )
①△ODB與△OCA的面積相等;②四邊形PAOB的面積等于k1- k2;③PA與PB始終相等;④當(dāng)點(diǎn)A是PC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn)
A. ①② B. ②④ C. ①②④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的圖象如右圖所示,則結(jié)論:
①兩函數(shù)圖象的交點(diǎn)的坐標(biāo)為; ②當(dāng)時(shí), ;
③當(dāng)時(shí), ; ④當(dāng)逐漸增大時(shí), 隨著的增大而增大, 隨著的增大而減。
其中正確結(jié)論的序號(hào)是 .
【答案】①③④
【解析】試題分析:反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.運(yùn)用一次函數(shù)和反比例函數(shù)的性質(zhì)來(lái)解決的一道常見(jiàn)的數(shù)形結(jié)合的函數(shù)試題.一次函數(shù)和反比例函數(shù)的交點(diǎn)坐標(biāo)就是一次函數(shù)與反比例函數(shù)組成的方程組的解.根據(jù)k>0確定一次函數(shù)和反比例函數(shù)在第一象限的圖象特征來(lái)確定其增減性;根據(jù)x=1時(shí)求出點(diǎn)B點(diǎn)C的坐標(biāo)從而求出BC的值;當(dāng)x=2時(shí)兩個(gè)函數(shù)的函數(shù)值相等時(shí)根據(jù)圖象求得x>2時(shí)y1>y2.
試題解析:①由一次函數(shù)與反比例函數(shù)的解析式,
解得, ,
∴A(2,2),故①正確;
②由圖象得x>2時(shí),y1>y2;故②錯(cuò)誤;
③當(dāng)x=1時(shí),B(1,3),C(1,1),∴BC=3,故③正確;
④一次函數(shù)是增函數(shù),y隨x的增大而增大,反比例函數(shù)k>0,y隨x的增大而減。④正確.
∴①③④正確.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.
【題型】填空題
【結(jié)束】
15
【題目】如圖, △P1OA1與△P2A1A2是等腰直角三角形,點(diǎn)、在函數(shù)的圖象上,斜邊、都在軸上,則點(diǎn)的坐標(biāo)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)C表示數(shù)c,b是最小的正整數(shù),且a,c滿足|a+2|+(c-7)2=0.
(1)填空:a=________,b=________,c=________;
(2)畫(huà)出數(shù)軸,并把A,B,C三點(diǎn)表示在數(shù)軸上;
(3)P是數(shù)軸上任意一點(diǎn),點(diǎn)P表示的數(shù)是x,當(dāng)PA+PB+PC=10時(shí),x的值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在足球比賽中,甲、乙兩名隊(duì)員互相配合向?qū)Ψ角蜷T(mén)MN進(jìn)攻,當(dāng)甲帶球沖到A點(diǎn)時(shí),乙已跟隨沖到B點(diǎn),如圖24-1-4-12.此時(shí),甲自己直接射門(mén)好,還是迅速將球傳給乙,讓乙射門(mén)好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C、D四個(gè)點(diǎn),且線段AB=4,CD=6,已知A表示的數(shù)是﹣10,C表示的數(shù)是8,若線段AB以每秒6個(gè)單位長(zhǎng)度的速度,線段CD以每秒2個(gè)單位長(zhǎng)度的速度在數(shù)軸上運(yùn)動(dòng)(A在B左側(cè),C在D左側(cè))
(1)B,D兩點(diǎn)所表示的數(shù)分別是 、 ;
(2)若線段AB向右運(yùn)動(dòng),同時(shí)線段CD向左運(yùn)動(dòng),經(jīng)過(guò)多少秒時(shí),BC=2;
(3)若線段AB、CD同時(shí)向右運(yùn)動(dòng),同時(shí)點(diǎn)P從原點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),經(jīng)過(guò)多少秒時(shí),點(diǎn)P到點(diǎn)A,C的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 是關(guān)于x的二次函數(shù),求:
(1)滿足條件的m的值;
(2)m為何值時(shí),拋物線有最低點(diǎn)?求出這個(gè)最低點(diǎn),當(dāng)x為何值時(shí),y隨x的增大而增大;
(3)m為何值時(shí),拋物線有最大值?最大值是多少?當(dāng)x為何值時(shí),y隨x的增大而減?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com