設(shè)拋物線y=x2+bx+c向下平移1個單位,再向左平移5個單位后,所得拋物線的頂點坐標為(-2,0),則原拋物線的解析式為
 
分析:拋物線y=x2+bx+c化為頂點坐標式再按照“左加右減,上加下減”的規(guī)律平移則可.
解答:解:根據(jù)題意y=x2+bx+c=(x+
b
2
2+c-
b2
4
下平移1個單位,再向左平移5個單位,得y=(x+
b
2
+5)2+c-
b2
4
-1.
∵拋物線的頂點坐標為(-2,0),∴-
b
2
-5=-2,c-
b2
4
-1=0,
解得:b=-6,c=10,
故答案為:y=x2-6x+10.
點評:此題不僅考查了對平移的理解,同時考查了學生將一般式轉(zhuǎn)化頂點式的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1x2=
c
a
.我們把它們稱為根與系數(shù)關(guān)系定理.
如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理我們又可以得到A、B兩個交點間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請你參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為等腰直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,b2-4ac=
 
;
(3)設(shè)拋物線y=x2+kx+1與x軸的兩個交點為A、B,頂點為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、設(shè)拋物線y=x2+kx+4與x軸有兩個不同的交點(x1,0),(x2,0),則下列結(jié)論中,一定成立的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=x2-4x+k與x軸交于A、B兩點,與y軸交于點C(0,-5).
(1)k=
-5
-5
,點A的坐標為
(-1,0)
(-1,0)
,點B的坐標為
(5,0)
(5,0)
;
(2)設(shè)拋物線y=x2-4x+k的頂點為M,求三角形ABM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•豐臺區(qū)二模)已知關(guān)于x的方程x2-(m-2)x+m-3=0.
(1)求證:此方程總有兩個實數(shù)根;
(2)設(shè)拋物線y=x2-(m-2)x+m-3與y軸交于點M,若拋物線與x軸的一個交點關(guān)于直線y=-x的對稱點恰好是點M,求m的值.

查看答案和解析>>

同步練習冊答案