【題目】一輛最大載重48噸的大型貨車,貨車的貨箱是長(zhǎng)14m,寬2.5m,高3m的長(zhǎng)方體,現(xiàn)有甲種貨物18噸,乙種貨物70m3,而甲種貨物每噸的體積為2.5m3,乙種貨物每立方米0.5噸.問(wèn):
(1)甲、乙兩種貨物是否都能裝上車?請(qǐng)說(shuō)明理由.
(2)為了最大地利用車的載重量和貨箱的容積,兩種貨物應(yīng)各裝多少噸?
【答案】(1)不能全部裝上船,見解析;(2)裝甲種貨物為18噸,裝乙種貨物為30噸
【解析】
(1)根據(jù)貨物的總重量與貨車的總載重進(jìn)行比較,得到答案.
(2)通過(guò)理解題意可知本題存在兩個(gè)等量關(guān)系,即甲種貨物的總質(zhì)量+乙種貨物的總質(zhì)量=48噸,甲種貨物所占的總體積+乙種貨物所占的總體積=貨箱體積,根據(jù)這兩個(gè)等量關(guān)系設(shè)出未知數(shù),列出方程求解即可.
解:(1)由于18+=158>48,故不能全部裝上船.
(2)設(shè)裝甲種貨物質(zhì)量為x噸,裝乙種貨物質(zhì)量為(48﹣x)噸.
根據(jù)題意,得2.5x+=14×2.5×3,
解得x=18.
則48﹣x=48﹣18=30(噸)
答:裝甲種貨物為18噸,裝乙種貨物為30噸
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)400元,領(lǐng)帶每條定價(jià)50元.廠方在開展促銷活動(dòng)期間,向客戶提供兩種優(yōu)惠方案:
方案①:買一套西裝送一條領(lǐng)帶;
方案②:西裝和領(lǐng)帶都按定價(jià)的90%付款.
現(xiàn)某客戶要到該服裝廠購(gòu)買西裝20套,領(lǐng)帶x條(x>20)
(1)若該客戶按方案①購(gòu)買,需付款 元(用含x的代數(shù)式表示);
若該客戶按方案②購(gòu)買,需付款 元(用含x的代數(shù)式表示);
(2)若x=30,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買較為合算?
(3)若兩種優(yōu)惠方案可同時(shí)使用,當(dāng)x=30時(shí),你能給出一種更為省錢的購(gòu)買方案嗎?試寫出你的購(gòu)買方法并計(jì)算出此種方案的付款金額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E、F分別為邊BC、CD的中點(diǎn),AF、DE相交于點(diǎn)G,則可得結(jié)論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點(diǎn)E、F不是正方形ABCD的邊BC、CD的中點(diǎn),但滿足CE=DF,則上面的結(jié)論①、②是否仍然成立;(請(qǐng)直接回答“成立”或“不成立”)
(2)如圖③,若點(diǎn)E、F分別在正方形ABCD的邊CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí)上面的結(jié)論①、②是否仍然成立?若成立,請(qǐng)寫出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.
(3)如圖④,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M、N、P、Q分別為AE、EF、FD、AD的中點(diǎn),請(qǐng)先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)E處,連接DE交AB于點(diǎn)F,當(dāng)△DEB是直角三角形時(shí),DF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,∠BOC=80°,OE是∠BOC的角平分線,OF⊥OE.
(1)求∠COF的度數(shù);
(2)說(shuō)明OF平分∠AOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半徑為6,圓心角為60°,則圖中陰影部分的面積是______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按下面的程序計(jì)算:當(dāng)輸入x=100 時(shí),輸出結(jié)果是299;當(dāng)輸入x=50時(shí),輸出結(jié)果是446;如果輸入 x 的值是正整數(shù),輸出結(jié)果是257,那么滿足條件的x的值最多有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)A(-2,0)B(-3,3)及原點(diǎn)O,頂點(diǎn)為C。
(1)求拋物線的解析式;
(2)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)D的坐標(biāo)。
(3)P是拋物線上的第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥ x軸,垂足為M,是否存在點(diǎn)P點(diǎn)使得以P、M、A為頂點(diǎn)的三角形與△BOC相似?若存在,求P點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x+3與x軸、y軸相交于A、B兩點(diǎn),點(diǎn)C在線段OA上,將線段CB繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CD,此時(shí)點(diǎn)D恰好落在直線AB上,過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E.
(1)求證:△BOC≌△CED;
(2)如圖2,將△BCD沿x軸正方向平移得△B'C'D',當(dāng)B'C'經(jīng)過(guò)點(diǎn)D時(shí),求△BCD平移的距離及點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在y軸上,點(diǎn)Q在直線AB上,是否存在以C、D、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com