【題目】如圖,矩形ABCD中,AB=4AD=3,M是邊CD上一點,將△ADM沿直線AM對折,得到△ANM

1)當AN平分∠MAB時,求DM的長;

2)連接BN,當DM=1時,求△ABN的面積;

3)當射線BN交線段CD于點F時,求DF的最大值

【答案】(1)DM=;(2);(3)

【解析】

試題分析:(1)由折疊性質得∠MAN=∠DAM,證出∠DAM=∠MAN=∠NAB,由三角函數(shù)得出DM=ADtan∠DAM=即可;

(2)延長MN交AB延長線于點Q,由矩形的性質得出∠DMA=∠MAQ,由折疊性質得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,證出MQ=AQ,設NQ=x,則AQ=MQ=1+x,證出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面積;

(3)過點A作AH⊥BF于點H,證明△ABH∽△BFC,得出對應邊成比例,得出當點N、H重合(即AH=AN)時,AH最大,BH最小,CF最小,DF最大,此時點M、F重合,B、N、M三點共線,由折疊性質得:AD=AH,由AAS證明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出結果.

試題解析:(1)由折疊性質得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四邊形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=ADtan∠DAM=3×tan30°==;

(2)延長MN交AB延長線于點Q,如圖1所示,∵四邊形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折疊性質得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,設NQ=x,則AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:,,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB===ANNQ=;

(3)過點A作AH⊥BF于點H,如圖2所示,∵四邊形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴當點N、H重合(即AH=AN)時,AH最大,BH最小,CF最小,DF最大,此時點M、F重合,B、N、M三點共線,如圖3所示:

由折疊性質得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,∵∠HBA=BFC,AHB=BCF,AH=BC,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH=,∴CF=,∴DF的最大值=DC﹣CF=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(
A.3a+4b=7ab
B.7a﹣3a=4
C.3a+a=3a2
D.3a2b﹣4a2b=﹣a2b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】亞洲陸地而積約為4400萬平方千米,將44000000科學記數(shù)法表示為(  )

A. 4.4×107B. 4.4×106C. 0.44×107D. 4.4×103

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )
A.a2a3=a6
B.a5+a5=a10
C.a6÷a2=a3
D.(a32=a6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2012年6月2日新疆科克蘇濕地進行第四次生態(tài)補水,補水約46萬米3 , 46萬米3用科學記數(shù)法表示為( )
A.4.6×1063
B.4.6×1053
C.4.6×1023
D.4.6×10米3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的頂點A0,1),B3,2),C1,4)均在正方形網(wǎng)格的格點上

1)畫出△ABC關于x軸的對稱圖形△A1B1C1;

2)將△A1B1C1沿x軸方向向左平移3個單位后得到△A2B2C2,寫出頂點A2,B2,C2的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】環(huán)境空氣質量問題已經(jīng)成為人們日常生活所關心的重要問題,我國新修訂的《環(huán)境空氣質量標準》中增加了PM2.5檢測指標,“PM2.5”是指大氣中危害健康的直徑小于或等于2.5微米的顆粒物,2.5微米即0.0000025米.用科學記數(shù)法表示0.0000025_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同一平面內的四條直線若滿足a⊥b,b⊥c,c⊥d,則下列式子成立的是( 。
A.a∥d
B.b⊥d
C.a⊥d
D.b∥c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標系中的位置如圖

1)畫出將△ABC向右平移2個單位得到△A1B1C1;

2)畫出將△ABC繞點O順時針方向旋轉90°得到的△A2B2C2

3)求△A1B1C1與△A2B2C2重合部分的面積

查看答案和解析>>

同步練習冊答案