(2009•青浦區(qū)一模)已知△ABC中,∠C=90°,CD⊥AB,垂足為D,若AD=4,BD=2,則CD=   
【答案】分析:首先證△ADC∽△BDC,進而可根據(jù)得出的關于AD、CD、BD的比例關系求出CD的長.
解答:解:∵∠C=90°,CD⊥AB,
∴∠A+∠ACD=∠A+∠B=90°;
∴∠A=∠BCD;
∴Rt△ADC∽Rt△CDB;
∴CD2=AD•BD=8,即CD=2
點評:此題主要考查了相似三角形的判定性質;本題所得出的結論實際就是射影定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年上海市青浦區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•青浦區(qū)一模)已知:拋物線y=x2+bx+c的圖象經過(1,6)、(-1,2)兩點.
求:這個拋物線的解析式、對稱軸及頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年上海市青浦區(qū)中考數(shù)學一模試卷(解析版) 題型:填空題

(2009•青浦區(qū)一模)將拋物線y=-2x2向上平移3個單位,再向左平移2個單位得到拋物線的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年上海市青浦區(qū)中考數(shù)學一模試卷(解析版) 題型:填空題

(2009•青浦區(qū)一模)拋物線y=-4(x-3)2+1的最高點到x軸的距離是   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年上海市青浦區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•青浦區(qū)一模)如圖,在梯形ABCD中,AD∥BC,∠D=90°,DC=6,sinB=,點P、Q分別是邊BC、對角線AC上的動點,(點P不與B、C重合),∠APQ=∠DAC=∠B,設PB=x,AQ=y.
(1)求BC的長;
(2)求y關于x的函數(shù)解析式,并寫出x的取值范圍;
(3)當△APQ是等腰三角形時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年上海市青浦區(qū)中考數(shù)學一模試卷(解析版) 題型:填空題

(2009•青浦區(qū)一模)如圖,已知△ABC的兩條中線AE、CF相交于點G,若AE=9,則GE=   

查看答案和解析>>

同步練習冊答案