作業(yè)寶如圖,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足為D點,AE平分∠BAC,交BD于F,交BC于E,點G為AB的中點,連接DG,交AE于點H,
(1)求∠ACB的度數(shù);
(2)HE=數(shù)學公式AF.

解:(1)∵AB=AC,
∴∠ACB=∠ABC,
∵∠BAC=45°,
∴∠ACB=∠ABC=(180°-∠BAC)=(180°-45°)=67.5°.
(2)連結(jié)HB,
∵AB=AC,AE平分∠BAC,
∴AE⊥BC,BE=CE,
∴∠CAE+∠C=90°,
∵BD⊥AC,
∴∠CBD+∠C=90°,
∴∠CAE=∠CBD,
∵BD⊥AC,D為垂足,
∴∠DAB+∠DBA=90°,
∵∠DAB=45°,
∴∠DBA=45°,
∴∠DBA=∠DAB,
∴DA=DB,
在Rt△BDC和Rt△ADF中,

∴Rt△BDC≌Rt△ADF (ASA),
∴BC=AF,
∵DA=DB,點G為AB的中點,
∴DG垂直平分AB,
∵點H在DG上,
∴HA=HB,
∴∠HAB=∠HBA=∠BAC=22.5°,
∴∠BHE=∠HAB+∠HBA=45°,
∴∠HBE=∠ABC-∠ABH=67.5°-22.5°=45°,
∴∠BHE=∠HBE,
∴HE=BE=BC,
∵AF=BC,
∴HE=AF.
分析:(1)根據(jù)等腰三角形性質(zhì)和三角形內(nèi)角和定理求出即可;
(2)證△ADF≌△BDC,推出AF=BC,求出HE=BE=CE,即可得出答案.
點評:本題考查了全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì),三角形內(nèi)角和定理等知識點的應用,主要考查學生的推理能力,難度偏大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習冊答案