如圖.在平面直角坐標(biāo)系中,矩形ABCO的頂點A、C、O的坐標(biāo)分別為:A(4,0),C(0,2),O(0,0).
(1)填空:把矩形ABCO分成面積相等的兩部分的直線有______條;這些直線都經(jīng)過矩形ABCO的______.
(2)若直線y=kx+4(k≠0)把矩形ABCO分成面積相等的兩部分,請你在圖中畫出這條直線,并求出該直線的解析式.

解:(1)無數(shù)條.
對角線的交點(或?qū)ΨQ中心或兩組對邊中垂線的交點).

(2)如圖,畫出直線y=kx+4.
根據(jù)三角形中位線性質(zhì)可知,點P的坐標(biāo)為(2,1),代入直線y=kx+4中得k=-
∴所求直線的解析式y(tǒng)=-x+4.
分析:(1)矩形是中心對稱圖形,其對稱中心是兩條對角線的交點,因此,經(jīng)過對稱中心的任意一條直線可以把矩形ABCO分成面積相等的兩部分;
(2)根據(jù)矩形又是軸對稱圖形,可確定點P的坐標(biāo),從而可確定直線解析式.
點評:矩形是中心對稱圖形,一般用待定系數(shù)法求解函數(shù)解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案