【題目】如圖,矩形中,,分別是線段AC、BC上的點(diǎn),且四邊形為矩形.
(Ⅰ)若是等腰三角形時(shí),求的長(zhǎng);
(Ⅱ)若,求的長(zhǎng).
【答案】(Ⅰ)AP的長(zhǎng)為4或5或;(Ⅱ)CF=
【解析】
試題分析:(Ⅰ)分情況CP=CD、PD=PC、DP=DC討論即可得;
(Ⅱ)連結(jié)PF、DE,記PF與DE的交點(diǎn)為O,連結(jié)OC,通過(guò)證明△ADP∽△CDF,從而得 ,由AP= ,從而可得CF= .
試題解析:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6, AC= =10;
要使△PCD是等腰三角形,有如下三種情況:
(1)當(dāng)CP=CD時(shí),CP=6,∴AP=AC-CP=4 ;
(2)當(dāng)PD=PC時(shí),∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP= ,即AP=5;
(3)當(dāng)DP=DC時(shí),過(guò)D作DQ⊥AC于Q,則PQ=CQ,∵S△ADC= AD·DC= AC·DQ,∴DQ= ,∴CQ= ,∴PC=2CQ = ,∴AP=AC-PC= .
綜上所述,若△PCD是等腰三角形,AP的長(zhǎng)為4或5或;
(Ⅱ)連結(jié)PF、DE,記PF與DE的交點(diǎn)為O,連結(jié)OC,
∵四邊形ABCD和PEFD都是矩形,∴∠ADC=∠PDF=90°,即∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC= ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF= PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,又∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,即∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴ ,∵AP= ,∴CF= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A.7x-6x=1B.4m+3m2=7m3C.-3(m-n)=-3m+3nD.-(x-y)=-x-y
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
根據(jù)所給信息,解答下列問(wèn)題:
(1)m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(4)若成績(jī)?cè)?0分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績(jī)是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在可以不同年的條件下,下列結(jié)論敘述正確的是( )
A.400個(gè)人中至少有兩人生日相同
B.300個(gè)人至少有兩人生日相同
C.300個(gè)人一定沒有兩人生日相同
D.300個(gè)人一定有兩人生日相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=(x+1)2-1的頂點(diǎn)坐標(biāo)是( )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在某次作業(yè)中得到如下結(jié)果:
,
,
,
,
.
據(jù)此,小明猜想:對(duì)于任意銳角,均有.
(Ⅰ)當(dāng)時(shí),驗(yàn)證是否成立;
(Ⅱ)小明的猜想是否成立?若成立,若成立,請(qǐng)給予證明;若不成立,請(qǐng)舉出一個(gè)反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形內(nèi)接于,是的直徑,點(diǎn)在的延長(zhǎng)線上,.
(Ⅰ)若,求弧的長(zhǎng);
(Ⅱ)若弧弧,,求證:是的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)的圖象.
(1)若點(diǎn)A的坐標(biāo)為(1,0).
①求拋物線l的表達(dá)式,并直接寫出當(dāng)x為何值時(shí),函數(shù)的值y隨x的增大而增大;
②如圖2,若過(guò)A點(diǎn)的直線交函數(shù)的圖象于另外兩點(diǎn)P,Q,且S△ABQ=2S△ABP,求點(diǎn)P的坐標(biāo);
(2)當(dāng)2<x<3時(shí),若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象過(guò)點(diǎn)(0,3)和(﹣2,0),那么直線必過(guò)下面的點(diǎn)( )
A.(4,6)
B.(﹣4,﹣3)
C.(6,9)
D.(﹣6,6)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com