如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為-1,直線(xiàn)l y=-X-與坐標(biāo)軸分別交于A,C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1) ,⊙B與X軸相切于點(diǎn)M. 
(1) 求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);       
(2) ⊙B以每秒1個(gè)單位長(zhǎng)度的速度沿X軸負(fù)方向平移,同時(shí),直線(xiàn)l繞點(diǎn)A順時(shí)針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時(shí),直線(xiàn)l也恰好與⊙B第一次相切.問(wèn):直線(xiàn)AC繞點(diǎn)A每秒旋轉(zhuǎn)多少度?
(3)如圖2.過(guò)A,O,C三點(diǎn)作⊙O1 ,點(diǎn)E是劣弧上一點(diǎn),連接EC,EA.EO,當(dāng)點(diǎn)E在劣弧上運(yùn)動(dòng)時(shí)(不與A,O兩點(diǎn)重合),的值是否發(fā)生變化?如果不變,求其值,如果變化,說(shuō)明理由.                                                    
.                       
解:(1)、A(-,0)
∵C(0,-),∴OA=OC。
∵OA⊥OC  ∴∠CAO=450----------------------------4
(2)如圖,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,此時(shí),直線(xiàn)l旋轉(zhuǎn)到l恰好與⊙B1第一次相切于點(diǎn)P, ⊙B1與X軸相切于點(diǎn)N,
連接B1O,B1N,則MN=t,  OB1=  B1N⊥AN ∴MN=3 即t=3-------------2分
連接B1A, B1P 則B1P⊥AP   B1P = B1N  ∴∠PA B1=∠NAB1
∵OA= OB1=  ∴∠A B1O=∠NAB1 ∴∠PA B1=∠A B1O  ∴PA∥B1O
在Rt⊿NOB1中,∠B1ON=450, ∴∠PAN=450, ∴∠1= 900.
∴直線(xiàn)AC繞點(diǎn)A平均每秒300.------------------------------------4分
(3). 的值不變,等于,如圖在CE上截取CK=EA,連接OK,
∵∠OAE=∠OCK,  OA=OC ∴⊿OAE≌⊿OCK, 
∴OE=OK ∠EOA=∠KOC  ∴∠EOK=∠AOC= 900.
∴EK=EO  ,                   

l

 
 ∴=----------------------------------------------4分

 
(1)已知點(diǎn)A,C的坐標(biāo),故可推出OA=OC,最后可得∠CAO=45°.
(2)依題意,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,連接B1O,B1N,則MN=3.連接B1A,B1P可推出∠PAB1=∠NAB1.又因?yàn)镺A=OB1=,故∠AB1O=∠NAB1,∠PAB1=∠AB1O繼而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直線(xiàn)AC繞點(diǎn)A平均每秒30度.
(3)在CE上截取CK=EA,連接OK,證明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可證明
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為⊙O的直徑,BC為⊙O的切線(xiàn),AC交⊙O于點(diǎn)E,D 為AC上一點(diǎn),∠AOD=∠C.

(1)求證:OD⊥AC;
(2)若AE=8,cosA=,求OD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,若AB是⊙O的直徑,CD是⊙O的弦,∠ABD=580,則∠BCD=(   )
A.320B.420C.580D.640

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

母線(xiàn)長(zhǎng)為3cm,底面直徑為4cm的圓錐側(cè)面展開(kāi)圖的面積是     cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C為直角,以AB上一點(diǎn)O為圓心,OA長(zhǎng)為半徑的圓與BC相切于點(diǎn)D,分別交AC、AB于點(diǎn)E、F.

小題1:若AC=8,AB=12,求⊙O的半徑;
小題2:連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB是⊙O的直徑,弦CDABE,如果AB=20,CD=16,那么線(xiàn)段OE的長(zhǎng)為(  ).
A.10B.8C.6D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某課題小組對(duì)課本的習(xí)題進(jìn)行了如下探索,請(qǐng)逐步思考并解答
小題1:(人教版教材習(xí)題24.4的第2題)如圖1,兩個(gè)大小一樣的傳送輪連接著一條傳送帶,兩個(gè)傳動(dòng)輪中心的距離是10m,求這條傳送帶的長(zhǎng)­­­_________.[

小題2:如圖2、將傳動(dòng)輪增加到3個(gè),每個(gè)傳動(dòng)輪的直徑是3m,每?jī)蓚(gè)傳動(dòng)輪中心的距離是10m, 求這條傳送帶的長(zhǎng)­­­­­­­­__________.

小題3:改變動(dòng)態(tài)關(guān)系,將靜態(tài)問(wèn)題升華為動(dòng)態(tài)問(wèn)題:
如圖3,一個(gè)半徑為1cm的⊙P沿邊長(zhǎng)為2πcm的等邊三角形△ABC的外沿作無(wú)滑動(dòng)滾動(dòng)一周,求圓心P經(jīng)過(guò)的路徑長(zhǎng)?⊙P自轉(zhuǎn)了多少周?

小題4:拓展與應(yīng)用
如圖4,一個(gè)半徑為1cm的⊙P沿半徑為3cm的⊙O外沿作無(wú)滑動(dòng)滾動(dòng)一周,則⊙P自轉(zhuǎn)了多少周?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,∠AOB是⊙0的圓心角,∠AOB=80°則弧所對(duì)圓周角∠ACB的度數(shù)是(   )
A.40°B.45°C.50°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在△ABC中,AB=5cm,BC=3cm,AC=4cm,則△ABC的內(nèi)切圓的半徑為_(kāi)________.

查看答案和解析>>

同步練習(xí)冊(cè)答案