【題目】如圖,點(diǎn)A、B、C、D把一個(gè)400米的環(huán)形跑道分成相等的4段,即兩條直道和兩條彎道的長(zhǎng)度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲、乙兩人分別從A、C兩處同時(shí)相向出發(fā)(如圖),當(dāng)他們第4次相遇時(shí),其相遇點(diǎn)在____________段(填”AB”或”BC”或”CD”或”DA”).
【答案】BC
【解析】甲乙兩人分別從A、C兩處同時(shí)相向出發(fā),從圖上可知首次相遇是個(gè)相遇問(wèn)題,找到路程,知道速度,根據(jù)路程=速度×時(shí)間,可列方程求解;再次相遇仍舊是個(gè)相遇問(wèn)題,找到路程,知道速度,根據(jù)路程=速度×時(shí)間,可列方程求解;找到每次相遇時(shí)間的規(guī)律,可求出相遇4次所用的時(shí)間,然后根據(jù)時(shí)間求出甲所跑的位置,從而求解.
設(shè)兩人第一次相遇時(shí)跑了x秒,則有4x+6x=200,
解得:x=20,
第1次相遇,總用時(shí)20秒,
依此類推可得:
第2次相遇,總用時(shí)20+20×2,即60秒,
第3次相遇,總用時(shí)20+20×4,即100秒,
第4次相遇,總用時(shí)20+20×6,即140秒,
則此時(shí)甲跑的圈數(shù)為140×4÷400=1.4,
400×0.4=160米,
此時(shí)甲在BC彎道上,
故答案為:BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩艘輪船同時(shí)從港口O出發(fā),甲輪船以20海里/時(shí)的速度向南偏東45°方向航行,乙輪船向南偏西45°方向航行.已知它們離開(kāi)港口O兩小時(shí)后,兩艘輪船相距50海里,求乙輪船平均每小時(shí)航行多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)G是BC邊上的任意一點(diǎn)(不同于端點(diǎn)B、C),連接AG,過(guò)B、D兩點(diǎn)作BE⊥AG,DF⊥AG,垂足分為E、F.
(1)求證:△ABE≌△DAF;
(2)若△ADF的面積為1,試求|BE﹣DF|的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A(2,5)在反比例函數(shù)y= 的圖象上.一次函數(shù)y=x+b的圖象過(guò)點(diǎn)A,且與反比例函數(shù)圖象的另一交點(diǎn)為B.
(1)求k和b的值;
(2)設(shè)反比例函數(shù)值為y1 , 一次函數(shù)值為y2 , 求y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD、EF都經(jīng)過(guò)點(diǎn)O,且AB⊥CD,OG平分∠BOE,如果∠EOG=∠AOE,求∠EOG,∠DOF和∠AOE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項(xiàng)式用記號(hào)f(x)來(lái)表示.例如f(x)=x2+3x-5,把x=某數(shù)時(shí)多項(xiàng)式的值用f(某數(shù))來(lái)表示.例如x=-1時(shí)多項(xiàng)式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.
(1)已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2);
(2)已知h(x)=ax3+2x2-ax-6,當(dāng)h()=a,求a的值;
(3)已知f(x)=--2(a,b為常數(shù)),當(dāng)k無(wú)論為何值,總有f(1)=0,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC 中,AB=AC,D 是直線 BC 上一點(diǎn)(不與點(diǎn) B、C 重合),以 AD 為一邊在 AD的右側(cè)作△ADE,AD=AE,∠DAE=∠BAC,連接 CE.
(1)如圖 1,當(dāng)點(diǎn) D 在線段 BC 上時(shí),求證:△ABD≌△ACE;
(2)如圖 2,當(dāng)點(diǎn) D 在線段 BC 上時(shí),如果∠BAC=90°,求∠BCE 的度數(shù);
(3)如圖 3,若∠BAC=α,∠BCE=β.點(diǎn) D 在線段 CB 的延長(zhǎng)線上時(shí),則α、β之間有怎樣 的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD∥EF,∠1=75,∠2=45,點(diǎn) G為∠BED 內(nèi)一點(diǎn),且 EG把∠BED分成 1 ∶ 2 兩部分,則∠GEF 的度數(shù)為 ___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com