如圖,已知在平行四邊形ABCD中,AP為∠DAB的平分線,交CD于點(diǎn)P,連接BP,BP恰好平分∠CBA,試判斷△APB的形狀,并說明你的理由.

解:△APB是直角三角形,
理由是:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAB+∠CBA=180°,
∵AP平分∠DAB,BP平分∠ABC,
∴∠PAB=∠DAB,∠PBA=∠CBA,
∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,
∴∠APB=180°-90°=90°,
∴△APB是直角三角形.
分析:根據(jù)平行四邊形的性質(zhì)得出AD∥BC,推出∠DAB+∠CBA=180°,根據(jù)角平分線定義求出∠PAB+∠PBA=90°,根據(jù)三角形的內(nèi)角和定理求出∠APB=90°,即可得出答案.
點(diǎn)評(píng):本題考查了平行四邊形性質(zhì),三角形的內(nèi)角和定理,角平分線定義等知識(shí)點(diǎn),關(guān)鍵是求出∠PAB+∠PBA=90°,題目比較好,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖,在平行四邊行ABCD中,DE平分∠ADC交BC邊于點(diǎn)E,已知BE=4cm,AB=6cm,則AD的長(zhǎng)度是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)四個(gè)頂點(diǎn)都在正方形邊上的四邊形叫做正方形的內(nèi)接四邊形.如圖,四邊形EFGH是正方形ABCD的內(nèi)接平行四邊形,且已知正方形ABCD的邊長(zhǎng)為4.
(1)若點(diǎn)E、F、G、H是正方形ABCD四邊中點(diǎn),試求四邊形EFGH的面積;
(2)設(shè)AE=x,AH=y,請(qǐng)?zhí)接懏?dāng)x、y滿足什么條件時(shí),四邊形EFGH是矩形.(要求寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

已知如圖所示,在平行四邊ABCD中,對(duì)角線相交于點(diǎn)O,已知AB=24cm,BC=18cm,△AOB的周長(zhǎng)是54cm那么△AOD的周長(zhǎng)是________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步訓(xùn)練與評(píng)價(jià)·數(shù)學(xué)·八年級(jí)·上 題型:044

閱讀材料,解答問題.

①如圖(1)已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),過A作AG⊥EB,垂足為G,AG交BD于F,則OE=OF理由是:∵四邊開ABCD是正方形,∴∠BOE=∠AOF=,BO=AO.又∵AG⊥EB,∠1+∠3==∠2+∠3∴∠1=∠2,∴Rt△BOE≌Rt△AOF解答此題后某同學(xué)產(chǎn)生了如下猜想:對(duì)上述命題,若點(diǎn)E在AC的延長(zhǎng)線上,AG⊥EB,AG交EB的延長(zhǎng)線于G,AG的延長(zhǎng)線交DB的延長(zhǎng)線于F,其它條件不變,如圖,則仍有OE=OF.問猜想所得的結(jié)論是否成立,請(qǐng)說明理由.

②已知:E、F分別是平行四邊形ABCD的邊AD和BC的中點(diǎn),并且2AB=BC,G是AF和BE的交點(diǎn),H是CE和DF的交點(diǎn).(1)試探求四邊形GFHE的形狀;并說明理由.(2)若四邊形GFHE是正方形,平行四邊形ABCD應(yīng)滿足什么條件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

已知如圖所示,在平行四邊ABCD中,對(duì)角線相交于點(diǎn)O,已知AB=24cm,BC=18cm,△AOB的周長(zhǎng)是54cm那么△AOD的周長(zhǎng)是________cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案