如果一個自然數(shù)的平方根為a,則比這個自然數(shù)大1的數(shù)可以表示為 ( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:三點(diǎn)一測叢書八年級數(shù)學(xué)上 題型:044
孫海洋是個愛動腦筋的八年級學(xué)生,他特別喜歡數(shù)學(xué),一有空就看數(shù)學(xué)課外書,并琢磨書上的問題.有一次,他從一本書中看到了下面一個有趣的問題:
仔細(xì)觀察下面4個等式:
32=2+22+3
42=3+32+4
52=4+42+5
62=5+52+6
……
請寫出第5個等式,由此能發(fā)現(xiàn)什么規(guī)律?用公式將發(fā)現(xiàn)的規(guī)律表示出來.
對這個問題,孫海洋感到很新奇,他認(rèn)真分析題目給出的4個等式,發(fā)現(xiàn)有以下一些結(jié)構(gòu)特征:
(1)每個等式的左邊都是一個自然數(shù)的平方,等式的右邊都是3個數(shù)的和.
(2)4個等式的左邊依次是32、42、52、62,它們的底數(shù)3、4、5、6是4個連續(xù)的自然數(shù),其大小均比所處等式的序號多2.
(3)每個等式右邊的3個加數(shù)也有明顯的規(guī)律.
第1個加數(shù)和第3個加數(shù)是兩個連續(xù)的自然數(shù),并且第3個加數(shù)等于該等式左邊平方數(shù)的底數(shù),第2個加數(shù)也是一個平方數(shù),底數(shù)等于第1個加數(shù).
根據(jù)以上規(guī)律,孫海洋猜想第5個等式應(yīng)該是72=6+62+7.
孫海洋進(jìn)一步歸納了這5個等式的規(guī)律,用公式表示為(n+1)2=n+n2+(n+1)…①其中n=2,3,…
如果將①式右邊變形、左邊不變,那么可得(n+1)2=n2+2n+1…②
等式②多么眼熟啊!它不就是完全平方公式的一個具體應(yīng)用嗎?由此可見,孫海洋同學(xué)歸納的規(guī)律是正確的.
想一想,當(dāng)n=0,1時,等式①是否成立?當(dāng)n為負(fù)整數(shù)時,等式①是否成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:新教材新學(xué)案 數(shù)學(xué) 七年級下冊 題型:044
在人教版教材七年級下冊第10章“實(shí)數(shù)”的數(shù)學(xué)活動1中,教科書介紹了“對于任意一個直角三角形,都有兩條直角邊的平方和等于斜邊的平方”,這就是著名的“勾股定理”.勾股定理是自然界最本質(zhì)最基本的規(guī)律之一,很多文明古國對此都有所研究,古希臘科學(xué)家畢達(dá)哥拉斯在公元前550年左右發(fā)現(xiàn)了這個定理,而我國早在公元前1 100多年就有人在使用這個定理來解決實(shí)際問題.
在自然數(shù)中有很多數(shù)都符合這個定理的形式,例如,32+42=52,52+122=132,92+402=412,72+242=252……
如果把自然數(shù)的范圍擴(kuò)大為有理數(shù)(整數(shù)和分?jǐn)?shù)),你還能找出符合上面形式的有理數(shù)嗎?如果再把有理數(shù)范圍擴(kuò)大為實(shí)數(shù)(有理數(shù)和無理數(shù))范圍呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一位同學(xué)在研究中發(fā)現(xiàn):
;
;
;
;
……
由此他猜想到:任意四個連續(xù)自然數(shù)的積加上1,一定是一個正整數(shù)的平方,你認(rèn)為他的猜想對嗎?請說出理由,如果不對,請舉一反例
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年江蘇省無錫市初一上學(xué)期末數(shù)學(xué)卷 題型:解答題
一位同學(xué)在研究中發(fā)現(xiàn):
;
;
;
;
……
由此他猜想到:任意四個連續(xù)自然數(shù)的積加上1,一定是一個正整數(shù)的平方,你認(rèn)為他的猜想對嗎?請說出理由,如果不對,請舉一反例
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com