(2012•濱?h二模)如圖,河堤的橫斷面ABED是梯形,BE∥AD,迎水坡AB的坡度i=1:0.75(指坡面的鉛直高度與水平寬度的比),坡長(zhǎng)AB=10米.小明站在岸邊的B點(diǎn),看見(jiàn)河里有一只小船由C處沿CA方向劃過(guò)來(lái),CAD在一直線上,此時(shí),他測(cè)得小船C的俯角是∠FGC=30°,若小明的眼睛與地面的距離BG=1.5米,求小船C到岸邊的距離CA的長(zhǎng)?(參考數(shù)據(jù):
3
≈1.73
,結(jié)果保留一位小數(shù))
分析:首先根據(jù)迎水坡AB的坡度i=1:0.75,坡長(zhǎng)AB=10米,得出BN,AN的長(zhǎng),進(jìn)而利用tan∠GCN=tan30°=
GN
CN
求出AC即可.
解答:解:過(guò)點(diǎn)B作BN⊥AD于點(diǎn)N,
∵迎水坡AB的坡度i=1:0.75,坡長(zhǎng)AB=10米,
∴設(shè)BN=4x,則AN=3x,
則AB=5x=10,
解得:x=2,
故BN=8m,AN=6m,
∵BE∥AD,∠FGC=30°,BG=1.5米,
∴NG=8+1.5=9.5m,
tan∠GCN=tan30°=
GN
CN
=
9.5
AC+6
=
3
3
,
解得:AC=
19
2
3
-6≈10.4.
答:小船C到岸邊的距離CA的長(zhǎng)為10.4m.
點(diǎn)評(píng):此題主要考查了坡角的定義以及銳角三角函數(shù)的應(yīng)用,根據(jù)已知構(gòu)造直角三角形得出tan∠GCN=
GN
CN
是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濱?h二模)將點(diǎn)A(-2,1)先向右平移3個(gè)單位,再向下平移1個(gè)單位后得到點(diǎn)B(a,b),則ab=
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濱?h二模)如圖,數(shù)表有7行7列,設(shè)aij表示第i行第j列上的數(shù),例如:a36表示第3行第6列上的數(shù),即a36=4.則(a23-a22)+(a52-a53)=
0
0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•濱?h二模)閱讀對(duì)人成長(zhǎng)的影響是巨大的,一本好書(shū)往往能改變?nèi)说囊簧磕甑?月23日被聯(lián)合國(guó)教科文組織確定為“世界讀書(shū)日”.如圖1是某中學(xué)全校三個(gè)年級(jí)學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖,其中八年級(jí)人數(shù)為350人,表格是隨機(jī)抽查該校所有學(xué)生某一周閱讀課外書(shū)籍情況的統(tǒng)計(jì)表.請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:
(1)圖1中九年級(jí)所占的圓心角的度數(shù)為
126
126
°
(2)求表格中A、B的值;
某一周全校學(xué)生閱讀課外書(shū)籍統(tǒng)計(jì)表
圖書(shū)種類 頻數(shù) 頻率
科普常識(shí) B 0.2
名人傳記 500 0.25
中外名著 800 A
其  它 300 0.15
(3)該校學(xué)生平均每人每周讀多少本課外書(shū)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濱?h二模)如圖所示,將一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)分成三等分,每一份內(nèi)標(biāo)上數(shù)字,第一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,指針?biāo)诘膮^(qū)域的數(shù)字記為a,第二次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,指針?biāo)诘膮^(qū)域的數(shù)字記為b(注意:如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域?yàn)橹梗?BR>(1)求拋物線y=ax2+bx+2開(kāi)口向下的概率;
(2)用畫(huà)樹(shù)狀圖或列表格的方法,求拋物線y=ax2+bx+2的對(duì)稱軸在y軸左側(cè)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濱?h二模)如圖所示,AB是⊙O的直徑,AB=4,D是⊙O上的一點(diǎn),∠ABD=30°,OF∥AD交BD于點(diǎn)E,交⊙O于點(diǎn)F.
(1)求DE的長(zhǎng)度;
(2)求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊(cè)答案