△ABC和各有6個元素(三條邊和三個內(nèi)角),問以下條件之一能否保證,如果能,說明理由,如不能,試舉一反例

(1)有3組對應元素相等;

(2)有4組對應元素相等;

(3)有4組元素(不一定對應)分別相等;

(4)有5組元素(不一定對應)分別相等.

答案:
解析:

解:(1)不一定能保證,如同是90°、60°、30°的三角板有大有小不全等.

(2)能保證,因為給定的4組對應元素至少有一組邊,根據(jù)SSSSAS、ASA、AAS中的任一種即可判定兩三角形全等.

(3)不能保證全等.

如圖所示,,,,但△ABC不等.

(4)不能保證全等.

如圖所示,,,,,但△ABC不全等.


提示:

不一定是元素組數(shù)相等越多就全等,一定注意對應兩字.

根據(jù)題目提供的條件,結(jié)合判定兩三角形全等的方法,對每一問畫出符合條件的圖形,然后進行判斷.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則co精英家教網(wǎng)sA=
AD
b
,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA        (1)
同理可得:b2=a2+c2-2accosB      (2)
c2=a2+b2-2abcosC               (3)
這個結(jié)論就是著名的余弦定理,在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3
3
,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB,垂足為點D,則cosA=
ADb
,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2,b2-b2cos2A=a2-(c-bcosA)2,
整理得a2=b2+c2-2bccosA.           ①
同理可得b2=a2+c2-2accosB.         ②
C2=a2+b2-2abcosC.                 ③
這個結(jié)論就是著名的余弦定理.在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
(1)在銳角△ABC中,已知∠A=60°,b=5,c=7,試利用①,②,③求出a,∠B,∠C,的數(shù)值;
(2)已知在銳角△ABC中,三邊a,b,c分別是7,8,9,求出∠A,∠B,∠C的度數(shù).(保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

△ABC和各有6個元素(三條邊和三個內(nèi)角),問以下條件之一能否保證,如果能,說明理由,如不能,試舉一反例

(1)有3組對應元素相等;

(2)有4組對應元素相等;

(3)有4組元素(不一定對應)分別相等;

(4)有5組元素(不一定對應)分別相等.

查看答案和解析>>

科目:初中數(shù)學 來源:第7章《銳角三角函數(shù)》中考題集(28):7.5 解直角三角形(解析版) 題型:解答題

在銳角△ABC中,∠A,∠B,∠C的對邊分別是a,b,c.如圖所示,過C作CD⊥AB于D,則cosA=,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA
同理可得:b2=a2+c2-2accosB
c2=a2+b2-2abcosC
這個結(jié)論就是著名的余弦定理,在以上三個等式中有六個元素a,b,c,∠A,∠B,∠C,若已知其中的任意三個元素,可求出其余的另外三個元素.
如:在銳角△ABC中,已知∠A=60°,b=3,c=6,
則由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3,∠B,∠C則可由式子(2)、(3)分別求出,在此略.
根據(jù)以上閱讀理解,請你試著解決如下問題:
已知銳角△ABC的三邊a,b,c分別是7,8,9,求∠A,∠B,∠C的度數(shù).(保留整數(shù))

查看答案和解析>>

同步練習冊答案