某廠今年一月份新產(chǎn)品的研發(fā)資金為a元,以后每月新產(chǎn)品的研發(fā)資金與上月相比增長率都是x,則該廠今年三月份新產(chǎn)品的研發(fā)資金y(元)關于x的函數(shù)關系式為y=        
a(1+x)2

試題分析:∵一月份新產(chǎn)品的研發(fā)資金為a元,2月份起,每月新產(chǎn)品的研發(fā)資金與上月相比增長率都是x,∴2月份研發(fā)資金為a×(1+x),∴三月份的研發(fā)資金為y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知二次函數(shù)的圖象與x軸的正半軸交于A 、B兩點(點A在點B的左側(cè)),與y軸交于點C .點A和點B間的距離為2, 若將二次函數(shù)的圖象沿y軸向上平移3個單位時,則它恰好過原點,且與x軸兩交點間的距離為4.
(1)求二次函數(shù)的表達式;
(2)在二次函數(shù)的圖象的對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出點P坐標;若不存在,請說明理由;
(3)設二次函數(shù)的圖象的頂點為D,在x軸上是否存在這樣的點F,使得?若存在,求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形OABC在平面直角坐標系xoy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O、A兩點,直線AC交拋物線于點D。
(1)求拋物線的解析式;
(2)求點D的坐標;
(3)若點M在拋物線上,點N在x軸上,是否存在以點A、D、M、N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(1)若花園的面積為192m2,  求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)(m是常數(shù))
(1)求證:不論m為何值,該函數(shù)的圖像與x軸沒有公共點;
(2)把該函數(shù)的圖像沿x軸向下平移多少個單位長度后,得到的函數(shù)的圖像與x軸只有一個公共點?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+2x+c的頂點為A(―1,―4),與y軸交于點B,與x軸負半軸交于點C.

(1)求這條拋物線的函數(shù)關系式;
(2)點P為第三象限內(nèi)拋物線上的一動點,連接BC、PC、PB,求△BCP面積的最大值,并求出此時點P的坐標;
(3)點E為拋物線上的一點,點F為x軸上的一點,若四邊形ABEF為平行四邊形,請直接寫出所有符合條件的點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線y =-2x2-3的頂點坐標是                 ;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=-x2+2x+m的部分圖象如圖所示,則關于x的一元二次方程的解為                      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若y=(a-1)是關于x的二次函數(shù),則a=_______.

查看答案和解析>>

同步練習冊答案