已知:正方形ABCD的邊長為1,射線AE與射線BC交于點E,射線AF與射線CD交于點F,∠EAF=45°.
(1)如圖1,當(dāng)點E在線段BC上時,試猜想線段EF、BE、DF有怎樣的數(shù)量關(guān)系?并證明你的猜想.
(2)設(shè)BE=x,DF=y,當(dāng)點E在線段BC上運動時(不包括點B、C),如圖1,求y關(guān)于x的函數(shù)解析式,并指出x的取值范圍.
(3)當(dāng)點E在射線BC上運動時(不含端點B),點F在射線CD上運動.試判斷以E為圓心以BE為半徑的⊙E和以F為圓心以FD為半徑的⊙F之間的位置關(guān)系.
(4)當(dāng)點E在BC延長線上時,設(shè)AE與CD交于點G,如圖2.問⊿EGF與⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,請說明理由.
(1)EF=BE+DF,理由見解析;(2)y= (0<x<1);(3)⊙E與⊙F外切;(4)BE的長為1+ .
【解析】
試題分析:(1)將△ADF繞著點A按順時針方向旋轉(zhuǎn)90°,得△ABF′,易知點F′、B、E在一直線上.證得AF′E≌△AFE.從而得到EF=F′E=BE+DF;
(2)由(1)得EF=x+y再根據(jù)CF=1-y,EC=1-x,得到(1-y)2+(1-x)2=(x+y)2.化簡即可得到y(tǒng)=
(0<x<1).
(3)當(dāng)點E在點B、C之間時,由(1)知EF=BE+DF,故此時⊙E與⊙F外切;當(dāng)點E在點C時,DF=0,⊙F不存在.當(dāng)點E在BC延長線上時,將△ADF繞著點A按順時針方向旋轉(zhuǎn)90°,得△ABF′,證得△AF′E≌△AFE.即可得到EF=EF′=BE-BF′=BE-FD.從而得到此時⊙E與⊙F內(nèi)切.
(4)△EGF與△EFA能夠相似,只要當(dāng)∠EFG=∠EAF=45°即可.這時有 CF=CE.設(shè)BE=x,DF=y,由(3)有EF=x-y.由CE2+CF2=EF2,得(x-1)2+(1+y)2=(x-y)2.化簡可得 y=(x>1).又由 EC=FC,得x-1=1+y,即x-1=1+,化簡得x2-2x-1=0,解之即可求得BE的長
試題解析:
(1)猜想:EF=BE+DF.理由如下:
將△ADF繞著點A按順時針方向旋轉(zhuǎn)90°,得△ABF′,易知點F′、B、E在一直線上.如圖1.
∵AF′=AF,
∠F′AE=∠1+∠3=∠2+∠3=90°-45°=45°=∠EAF,
又AE=AE,
∴△AF′E≌△AFE.
∴EF=F′E=BE+DF;
(2)由(1)得EF=x+y
又CF=1-y,EC=1-x,
∴(1-y)2+(1-x)2=(x+y)2.
化簡可得y= (0<x<1);
(3)①當(dāng)點E在點B、C之間時,由(1)知EF=BE+DF,故此時⊙E與⊙F外切;
②當(dāng)點E在點C時,DF=0,⊙F不存在.
③當(dāng)點E在BC延長線上時,將△ADF繞著點A按順時針方向旋轉(zhuǎn)90°,得△ABF′,圖2.
有AF′=AF,∠1=∠2,BF′=FD,
∴∠F′AF=90°.
∴∠F′AE=∠EAF=45°.
又 AE=AE,
∴△AF′E≌△AFE.
∴EF=EF′=BE-BF′=BE-FD.
∴此時⊙E與⊙F內(nèi)切.
綜上所述,當(dāng)點E在線段BC上時,⊙E與⊙F外切;當(dāng)點E在BC延長線上時,⊙E與⊙F內(nèi)切;
(4)△EGF與△EFA能夠相似,只要當(dāng)∠EFG=∠EAF=45°即可.
這時有CF=CE.
設(shè)BE=x,DF=y,由(3)有EF=x-y.
由CE2+CF2=EF2,得(x-1)2+(1+y)2=(x-y)2.
化簡可得 y=(x>1).
又由EC=FC,得x-1=1+y,即x-1=1+,化簡得
x2-2x-1=0,解之得
x=1+或x=1-(不符題意,舍去).
∴所求BE的長為1+ .
考點:相似形綜合題.
科目:初中數(shù)學(xué) 來源: 題型:
A、 | B、 | C、 | D、 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
6 |
3 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com