拋物線y=ax2 +bx+c的頂點(diǎn)為P,與x軸的兩個交點(diǎn)為M、N(點(diǎn)M在點(diǎn)N的左側(cè)),△PMN的三個內(nèi)角么∠P、∠M、∠N所對的邊分別為p、m、n,且m =n,若關(guān)于x的方程(p -m) x2+2nx+(p+m)=0有兩個相等的實(shí)數(shù)根.  
(1)試判斷△PMN的形狀;  
(2)當(dāng)頂點(diǎn)P的坐標(biāo)為(2,-1)時,求拋物線的解析式;  
(3)設(shè)拋物線與了軸的交點(diǎn)為Q.
求證:直線y=x-1將四邊形MPNQ分成的兩個圖形的面積相等.
解:(1) △=(2n)2-4(p-m)(p+m)=4n2-4p2+4m2 =0 ,
∴4p2=4n2+4m2 ,即p2=n2+m2 ,
∴△PMN 為直角三角形.
又∵m=n ,
∴△PMN 為等腰直角三角形.
(2) 設(shè)拋物線的解析式為y=a·(x- 2)2-1 ,
∵△PAIN 為等腰直角三角形,
∴|MN|=2 .
又∵M(jìn) 、N 關(guān)于直線x=2 對稱,M 在N 的左側(cè),
∴M(1 ,0) ,N(3 ,0) ,
將點(diǎn)M(1 ,0) 代入到函數(shù)解析式,
即0=a·(1-2)2 -1,
∴a=1 .
∴y=(x-2)2-1=x2-4x+3 .
(3) 如右圖 ,直線QN 的解析式為y=3-x,
設(shè)直線y=3 -x 與直線y= x-1 的交點(diǎn)為K ,則有 ,
 
∴K點(diǎn)坐標(biāo)為(2,1).



∴直線y=x-1將四邊形MPNQ分成的兩個圖形面積相等.
 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(2,8)在拋物線y=ax2上,則a的值為(  )
A、±2
B、±2
2
C、2
D、-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸的負(fù)半軸相交于D.
(1)若拋物線y=ax2+bx+c經(jīng)過B、C、D三點(diǎn),求此拋物線的解析式,并寫出拋物線與圓A的另一個交點(diǎn)E的坐標(biāo);
(2)若動直線MN(MN∥x軸)從點(diǎn)D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點(diǎn),動點(diǎn)P同時從點(diǎn)C出發(fā),在線段OC上以每秒2個長度單位的速度向原點(diǎn)O運(yùn)動,連接PM,設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,
MN•OPMN+OP
的值最大,并求出最大值;
(3)在(2)的條件下,若以P、C、M為頂點(diǎn)的三角形與△OCD相似,求實(shí)數(shù)t的值.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若(2,0)、(4,0)是拋物線y=ax2+bx+c上的兩個點(diǎn),則它的對稱軸是直線( 。
A、x=0B、x=1C、x=2D、x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),拋物線y=ax2+bx經(jīng)過點(diǎn)A(6,0),且頂點(diǎn)B(m,6)在直線y=2x上.
(1)求m的值和拋物線y=ax2+bx的解析式;
(2)如在線段OB上有一點(diǎn)C,滿足OC=2CB,在x軸上有一點(diǎn)D(10,0),連接DC,且直線DC與y軸交于點(diǎn)E.
①求直線DC的解析式;
②如點(diǎn)M是直線DC上的一個動點(diǎn),在x軸上方的平面內(nèi)有另一點(diǎn)N,且以O(shè)、E、M、N為頂點(diǎn)的四邊形是菱形,請求出點(diǎn)N的坐標(biāo).(直接寫出結(jié)果,不需要過程.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
等腰
等腰
三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點(diǎn)O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案