【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為,且經(jīng)過(guò)點(diǎn),與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn)

求拋物線的解析式;

若直線經(jīng)過(guò)、兩點(diǎn),且與軸交于點(diǎn),試證明四邊形是平行四邊形;

點(diǎn)在拋物線的對(duì)稱軸上運(yùn)動(dòng),請(qǐng)?zhí)剿鳎涸?/span>軸上方是否存在這樣的點(diǎn),使以為圓心的圓經(jīng)過(guò)、兩點(diǎn),并且與直線相切?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1A-1,0B3,0C0,3

2)平行四邊形

3)(1

【解析】

試題(1)根據(jù)頂點(diǎn)式設(shè)拋物線解析式為y=ax-12+4,將N2,3)代入求a,確定拋物線解析式,根據(jù)拋物線解析式求點(diǎn)A、B、C的坐標(biāo);

2)根據(jù)MC兩點(diǎn)坐標(biāo)求直線y=kx+t解析式,得出D點(diǎn)坐標(biāo),求線段AD,由CN兩點(diǎn)坐標(biāo)可知CN∥x軸,再求CN,證明CNAD平行且相等,判斷斷四邊形CDAN是平行四邊形;

3)存在.如圖設(shè)Tx1,y1),Qx2,y2),分別過(guò)T、QTF⊥y軸,QG⊥x軸,聯(lián)立直線TQ解析式與拋物線解析式,可得x1y1,x2,y2之間的關(guān)系,當(dāng)以線段TQ為直徑的圓恰好過(guò)坐標(biāo)原點(diǎn)時(shí),∠TOQ=90°,利用互余關(guān)系可證△TOF∽△QOG,利用相似比得出線段關(guān)系,結(jié)合x1,y1,x2,y2之間的關(guān)系求m的值.

試題解析:(1A-1,0B3,0C0,3).

2)直線y=kx+t經(jīng)過(guò)C、M兩點(diǎn),

所以

k=1,t=3,

直線解析式為y=x+3

y=0,得x=-3,

D-3,0),即OD=3,又OC=3,

在直角三角形COD中,根據(jù)勾股定理得:CD==

連接AN,過(guò)Nx軸的垂線,垂足為F

設(shè)過(guò)AN兩點(diǎn)的直線的解析式為y=mx+n,

解得m=1,n=1

所以過(guò)A、N兩點(diǎn)的直線的解析式為y=x+1

所以DC∥AN.在Rt△ANF中,AF=3,NF=3

所以AN=,

所以DC=AN

因此四邊形CDAN是平行四邊形.

3)假設(shè)在x軸上方存在這樣的P點(diǎn),使以P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),并且與直線CD相切,設(shè)P1,u)其中u0,

PA是圓的半徑且PA2=u2+22過(guò)P做直線CD的垂線,垂足為Q,則PQ=PA時(shí)以P為圓心的圓與直線CD相切.

由第(2)小題易得:△MDE為等腰直角三角形,故△PQM也是等腰直角三角形,

P1,u)得PE=u,PM=|4-u|,PQ=

PQ2=PA2得方程:=u2+22

解得u=,舍去負(fù)值u=,符合題意的u=,

所以,滿足題意的點(diǎn)P存在,其坐標(biāo)為(1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,邊上的中點(diǎn).

(1),,連接.判斷的形狀,并證明;

(2)分別是上的中線,連接.判斷的形狀,并說(shuō)明理由;

(3)分別是的平分線,連接.判斷的關(guān)系,不需證明;

(4)若分別在上任取一點(diǎn),且,連接.在不添加輔助線的情況下,你還能得到哪些不同于上面的正確結(jié)論?請(qǐng)寫(xiě)出至少四條,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB、連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E.

(1)判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若BE=4,DE=8,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm,如果點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為每秒2cm1cm,F(xiàn)Q⊥BC,分別交AC、BC于點(diǎn)PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<4).

(1)連接EF,若運(yùn)動(dòng)時(shí)間t=   時(shí),EF⊥AC;

(2)連接EP,當(dāng)△EPC的面積為3cm2時(shí),求t的值;

(3)△EQP∽△ADC,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)”是我國(guó)流傳了上千年的傳統(tǒng)節(jié),全國(guó)各地舉行了豐富多彩的紀(jì)念活動(dòng),為了繼承傳統(tǒng),減緩學(xué)生考前的心理壓力,某班學(xué)生組織了一次拔河比賽,裁判員讓兩隊(duì)隊(duì)長(zhǎng)用“石頭、剪刀、布”的手勢(shì)方式選擇場(chǎng)地位置,規(guī)則:石頭勝剪刀,剪刀勝布,布勝石頭,手勢(shì)相同則再?zèng)Q勝負(fù).

(1)用列表或畫(huà)樹(shù)狀圖法,列出甲、乙兩隊(duì)手勢(shì)可能出現(xiàn)的情況;

(2)裁判員的這種做法對(duì)甲、乙雙方公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一般成年人的腳長(zhǎng)(厘米)與鞋碼(碼)有如下關(guān)系:

腳長(zhǎng)(厘米)

23

235

24

245

鞋碼(碼)

36

37

38

39

1)若某人的腳長(zhǎng)為26厘米,他應(yīng)穿多少碼的鞋?

2)請(qǐng)建立鞋碼(厘米)與腳長(zhǎng)(碼)之間的函數(shù)表達(dá)式;

3)我國(guó)著名籃球運(yùn)動(dòng)員姚明穿53碼的鞋,請(qǐng)你根據(jù)以上關(guān)系計(jì)算他的腳長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AFCE.

(1)說(shuō)明四邊形ACEF是平行四邊形;(2)當(dāng)B滿足什么條件時(shí),四邊形ACEF是菱形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.

(1)請(qǐng)分別寫(xiě)出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;

(2)小明選擇哪家快遞公司更省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在△ABC中,∠C90°AD是∠BAC的平分線,DEABE,FAC上,BDDF,

1)證明:CFEB

2)證明:ABAF+2EB

查看答案和解析>>

同步練習(xí)冊(cè)答案