如圖,邊長(zhǎng)為2的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45度后得到正方形AB′C′D′,邊B′C′與DC交于點(diǎn)O,則四邊形AB′OD的周長(zhǎng)是( )

A.
B.6
C.
D.2+
【答案】分析:由邊長(zhǎng)為2的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45度后得到正方形AB′C′D′,可求三角形與邊長(zhǎng)的差B′C,再根據(jù)等腰直角三角形的性質(zhì),勾股定理可求B′O,OD,從而可求四邊形AB′OD的周長(zhǎng).
解答:解:連接B′C,
∵旋轉(zhuǎn)角∠BAB′=45°,∠BAC=45°,
∴B′在對(duì)角線AC上,
∵AB=AB′=2,
在Rt△ABC中,AC==2,
∴B′C=2-2,
在等腰Rt△OB′C中,OB′=B′C=2-2,
在直角三角形OB′C中,OC=(2-2)=4-2
∴OD=2-OC=2-2,
∴四邊形AB′OD的周長(zhǎng)是:2AD+OB′+OD=4+2-2+2-2=4
故選A.
點(diǎn)評(píng):本題考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì).此題難度適中,注意連接B′C構(gòu)造等腰Rt△OB′C是解題的關(guān)鍵,注意旋轉(zhuǎn)中的對(duì)應(yīng)關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為
π2
的正△ABC,點(diǎn)A與原點(diǎn)O重合,若將該正三角形沿?cái)?shù)軸正方向翻滾一周,點(diǎn)A恰好與數(shù)軸上的點(diǎn)A′重合,則點(diǎn)A′對(duì)應(yīng)的實(shí)數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請(qǐng)說(shuō)明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,邊長(zhǎng)為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請(qǐng)說(shuō)明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖將邊長(zhǎng)為1的正方形OAPB沿軸正方向連續(xù)翻轉(zhuǎn)2006次,點(diǎn)P依次落在點(diǎn),,,……的位置,則的橫坐標(biāo)=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年新人教版九年級(jí)(上)期中數(shù)學(xué)試卷(7)(解析版) 題型:解答題

如圖,邊長(zhǎng)為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請(qǐng)說(shuō)明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案