【題目】如圖,已知Rt△ABC中,∠ABC=90°,△ABC的周長為17cm,斜邊上中線BD長為 .則該三角形的面積為

【答案】
【解析】解:∵在Rt△ABC中,∠ABC=90°,斜邊上中線BD長為 , ∴斜邊AC=2BD=7,
∴兩直角邊的和為:AB+BC=17﹣7=10,
∵AB2+BC2=AC2=49,
(AB+BC)2=AB2+BC2+2ABBC=100,
∴2ABBC=100﹣49=51,
∴△ABC面積為: ABBC=
所以答案是
【考點精析】本題主要考查了直角三角形斜邊上的中線和勾股定理的概念的相關知識點,需要掌握直角三角形斜邊上的中線等于斜邊的一半;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進度,想在小山的另一側同時施工.為了使山的另一側的開挖點C在AB的延長線上,設想過C點作直線AB的垂線L,過點B作一直線(在山的旁邊經(jīng)過),與L相交于D點,經(jīng)測量∠ABD=135°,BD=800米,求直線L上距離D點多遠的C處開挖?(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某港口P位于東西方向的海岸線上,“遠航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠航”號每小時航行16nmile,“海天”號每小時航行12nmile,它們離開港口一個半小時后相距30nmile,且知道“遠航”號沿東北方向航行,那么“海天”號航行的方向是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2015次運動后,動點P的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,點P在BC上移動,則當PA+PD取最小值時,BP長為( )

A.1
B.2
C.2.5
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ab=-2,a-3b=5,則a3b-6a2b2+9ab3的值為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,專業(yè)救助船“滬救1”輪、“滬救2”輪分別位于A、B兩處,同時測得事發(fā)地點CA的南偏東60°且CB的南偏東30°上.已知BA的正東方向,且相距100里,請分別求出兩艘船到達事發(fā)地點C的距離.(注:里是海程單位,相當于一海里.結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式5xy2-25x2y各項的公因式為(  )

A. 5 B. 5x C. 5xy D. 25xy

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC是直角三角形,ACB=90,AC=BC,OA=1,OC=4,拋物線y=+bx+c經(jīng)過A,B兩點,拋物線的頂點為D.

(1)、求b,c的值;

(2)、點E是直角三角形ABC斜邊AB上一動點(點A、B除外),過點E作x軸的垂線交拋物線于點F,當線段EF的長度最大時,求點E的坐標;

(3)、在(2)的條件下:求以點E、B、F、D為頂點的四邊形的面積;在拋物線上是否存在一點P,使EFP是以EF為直角邊的直角三角形? 若存在,求出所有點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案