兩個半徑相等的圓的位置關(guān)系有( 。┓N.
分析:首先理解兩圓的五種位置關(guān)系,再判斷即可.
解答:解:兩個半徑相等的圓的位置關(guān)系有相離、外切、相交、內(nèi)切,4種,
故選C.
點評:本題考查了圓與圓的位置關(guān)系的應用,注意:圓與圓的位置關(guān)系有五種:相離、外切、相交、內(nèi)切、內(nèi)含.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

10、在同一平面中的兩個圖形F1和F2,通過平移總可以完全疊合在一起(不論F1和F2的初始位量如何),則F1和F2可以是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

數(shù)學活動課上,甲、乙兩位同學在研究一道數(shù)學題:“已知:如圖1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.試畫直線m,l,使直線m將△ABC分成的兩個小三角形與直線l將△DEF分成的兩個小三角形分別相似,并標出每個小三角形各內(nèi)角的度數(shù).”
甲同學是這樣做的:如圖2,使得兩個直角三角形的斜邊重合,以斜邊中點0為圓心,OB長為半徑作出輔助圓,根據(jù)到定點的距離等于定長的點在圓上,可知A、B(E)、C(F)、D在⊙0上.設BD所在的直線m與AC所在的直線l交于點G,根據(jù)同弧所對的圓周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,從而△AGB∽△DGF.△GBC∽△GEF.
乙同學在甲同學的啟發(fā)下,利用輔助圓又補充了其它分割方法.
你看明白甲同學的分割方法了嗎?請你仿照甲同學的方法,把這道題其它的所有分割方法補充完整.
要求:不需寫解答過程.如圖2所示.利用輔助圓畫出示意圖,標明直線及每個小三角形各內(nèi)角的度數(shù)即可.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

數(shù)學活動課上,甲、乙兩位同學在研究一道數(shù)學題:“已知:如圖1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.試畫直線m,l,使直線m將△ABC分成的兩個小三角形與直線l將△DEF分成的兩個小三角形分別相似,并標出每個小三角形各內(nèi)角的度數(shù).”
甲同學是這樣做的:如圖2,使得兩個直角三角形的斜邊重合,以斜邊中點0為圓心,OB長為半徑作出輔助圓,根據(jù)到定點的距離等于定長的點在圓上,可知A、B(E)、C(F)、D在⊙0上.設BD所在的直線m與AC所在的直線l交于點G,根據(jù)同弧所對的圓周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,從而△AGB∽△DGF.△GBC∽△GEF.
乙同學在甲同學的啟發(fā)下,利用輔助圓又補充了其它分割方法.
你看明白甲同學的分割方法了嗎?請你仿照甲同學的方法,把這道題其它的所有分割方法補充完整.
要求:不需寫解答過程.如圖2所示.利用輔助圓畫出示意圖,標明直線及每個小三角形各內(nèi)角的度數(shù)即可.

查看答案和解析>>

科目:初中數(shù)學 來源:2005-2006學年北京市海淀區(qū)上地實驗中學九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

數(shù)學活動課上,甲、乙兩位同學在研究一道數(shù)學題:“已知:如圖1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.試畫直線m,l,使直線m將△ABC分成的兩個小三角形與直線l將△DEF分成的兩個小三角形分別相似,并標出每個小三角形各內(nèi)角的度數(shù).”
甲同學是這樣做的:如圖2,使得兩個直角三角形的斜邊重合,以斜邊中點0為圓心,OB長為半徑作出輔助圓,根據(jù)到定點的距離等于定長的點在圓上,可知A、B(E)、C(F)、D在⊙0上.設BD所在的直線m與AC所在的直線l交于點G,根據(jù)同弧所對的圓周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,從而△AGB∽△DGF.△GBC∽△GEF.
乙同學在甲同學的啟發(fā)下,利用輔助圓又補充了其它分割方法.
你看明白甲同學的分割方法了嗎?請你仿照甲同學的方法,把這道題其它的所有分割方法補充完整.
要求:不需寫解答過程.如圖2所示.利用輔助圓畫出示意圖,標明直線及每個小三角形各內(nèi)角的度數(shù)即可.

查看答案和解析>>

科目:初中數(shù)學 來源:2005-2006學年北京市海淀區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

數(shù)學活動課上,甲、乙兩位同學在研究一道數(shù)學題:“已知:如圖1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.試畫直線m,l,使直線m將△ABC分成的兩個小三角形與直線l將△DEF分成的兩個小三角形分別相似,并標出每個小三角形各內(nèi)角的度數(shù).”
甲同學是這樣做的:如圖2,使得兩個直角三角形的斜邊重合,以斜邊中點0為圓心,OB長為半徑作出輔助圓,根據(jù)到定點的距離等于定長的點在圓上,可知A、B(E)、C(F)、D在⊙0上.設BD所在的直線m與AC所在的直線l交于點G,根據(jù)同弧所對的圓周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,從而△AGB∽△DGF.△GBC∽△GEF.
乙同學在甲同學的啟發(fā)下,利用輔助圓又補充了其它分割方法.
你看明白甲同學的分割方法了嗎?請你仿照甲同學的方法,把這道題其它的所有分割方法補充完整.
要求:不需寫解答過程.如圖2所示.利用輔助圓畫出示意圖,標明直線及每個小三角形各內(nèi)角的度數(shù)即可.

查看答案和解析>>

同步練習冊答案