已知x2-7|x|+6=0( )
A.各根的和為7
B.各根的和為零
C.各根的和為7
D.各根的積為6
【答案】分析:此題需要分情況分析,根據(jù)①當x>0時;②當x<0時根與系數(shù)的關系,可判斷出各選項的正誤.
解答:解:由根與系數(shù)的關系可得:
①當x>0時,x2-7x+6=0,可得:x1+x2=7,x1•x2=6;
②當x<0時,x2+7x+6=0,可得:x3+x4=-7,x3•x4=6;
∴各根的和為零,各根的積為36;
故選B.
點評:熟記根與系數(shù)的關系是解決本題的關鍵,也要正確處理絕對值的符號.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知x2-4x+y2-6y+13=0,求x、y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知
x
2
-
x
3
=1
,那么x2-16=
20
20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知
x2-1
+
4y+1
=0,求
2001x
+y2000的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

定義新運算:(a,b)?(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d)(a,b)*(c,d)=a2+c2-bd
(1)求(1,2)*(3,-4)的值;
(2)已知(1,2)?(p,q)=(2,-4),分別求出p與q的值;
(3)在(2)的條件下,求(1,2)⊕(p,q)的結果;
(4)已知x2+2xy+y2=5,x2-2xy+y2=1,求(x,5)*(y,xy)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先閱讀后解題
若m2+2m+n2-6n+10=0,求m和n的值.
解:m2+2m+1+n2-6n+9=0
即(m+1)2+(n-3)2=0
∵(m+1)2≥0,(n-3)2≥0
∴(m+1)2=0,(n-3)2=0
∴m+1=0,n-3=0
∴m=-1,n=3
利用以上解法,解下列問題:
已知 x2+5y2-4xy+2y+1=0,求x和y的值.

查看答案和解析>>

同步練習冊答案