如圖,四邊形ABCD內(nèi)接于以BC為直徑的圓,圓心為O,且AB=AD,延長CB、DA交于P,過C點作PD的垂線交PD的延長線于E,且PB=BO,連接OA.
(1)求證:OA∥CD;
(2)求線段BC:DC的值;
(3)若CD=18,求DE的長.
分析:(1)連接BD,由圓周角定理可知∠BDC=90°,即CD⊥BD,再由AB=AD可知
AB
=
AD
,則OA⊥BD,由此即可得出結論;
(2)設⊙O的半徑為r,則PB=OB=OC=OA=r,再由OA∥CD可知,△OAP∽△CDP,故可得出
OP
PC
=
OA
CD
,故可用r表示出CD的長,再求出BC:DC的值即可;
(3)由OF∥CD,OB=OC根據(jù)中位線定理可以求出OF,AF;再根據(jù)勾股定理在Rt△DBC中可以求出BD,DF;接著在Rt△ADF中求出AD;然后利用平行線的性質得∠FAD=∠CDE證明△AFD∽△DEC,利用相似三角形的對應邊成比例可以求出DE.
解答:(1)證明:連接BD,交OA于點F.
∵BC是⊙O的直徑,
∴∠BDC=90°,即CD⊥BD,
∵AB=AD,
AB
=
AD

∴OA⊥BD,
∴OA∥CD;

(2)解:設⊙O的半徑為r,
∵PB=OB,
∴PB=OB=OC=OA=r,
∵OA∥CD,
∴△OAP∽△CDP,
OP
PC
=
OA
CD
,
2r
3r
=
r
CD
,解得CD=
3r
2

BC
CD
=
2r
3r
2
=
4
3
;

(3)解:∵OF∥CD,
OF
DC
=
BO
BC
=
1
2
,
∴OF=9,AF=3;
∵BD=
BC2-DC2
=6
7

∴DF=
1
2
BD=3
7
,
∴AD=
DF2+AF2
=6
2

∵∠AFD=∠DEC=90°,OA∥DC,∠FAD=∠CDE,
∴△AFD∽△DEC,
DE
DC
=
AF
AD
,即
DE
18
=
3
6
2
;
∴DE=
9
2
2
點評:本題考查的是相似三角形的判定與性質,綜合性比較強,此題把垂徑定理,平行線分線段成比例,相似三角形的性質與判定,勾股定理,中位線定理等知識都放在圓的背景中,充分發(fā)揮這些知識的作用解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案