【題目】如圖,點E在正方形ABCD對角線AC上,且EC=2.5AE,直角三角形FEG的兩直角邊EF,EG分別交BC,CD于M,N.若正方形邊長是a,則重疊部分四邊形EMCN的面積為( )
A.
B.
C.
D.
【答案】A
【解析】解:過E作EP⊥BC于點P,EQ⊥CD于點Q,如圖所示:
∵四邊形ABCD是正方形,
∴∠BCD=90°,
又∵∠EPM=∠EQN=90°,
∴∠PEQ=90°,
∴∠PEM+∠MEQ=90°,
∵△FEG是直角三角形,
∴∠NEF=∠NEQ+∠MEQ=90°,
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分線,∠EPC=∠EQC=90°,
∴EP=EQ,四邊形PCQE是正方形,
在△EPM和△EQN中,
,
∴△EPM≌△EQN(ASA)
∴S△EQN=S△EPM ,
∴四邊形EMCN的面積等于正方形PCQE的面積,
∵正方形ABCD的邊長為a,
∴AC==a,
∵EC=2.5AE,
∴EC=a,
∴正方形PCQE的面積=×(a)2=a2 ,
∴四邊形EMCN的面積=a2 .
故選:A.
過E作EP⊥BC于點P,EQ⊥CD于點Q,△EPM≌△EQN,利用四邊形EMCN的面積等于正方形PCQE的面積求解.
科目:初中數(shù)學 來源: 題型:
【題目】定義:數(shù)x、y、z中較大的數(shù)稱為max{x,y,z}.例如max{﹣3,1,﹣2}=1,函數(shù)y=max{﹣t+4,t,}表示對于給定的t的值,代數(shù)式﹣t+4,t,中值最大的數(shù),如當t=1時y=3,當t=0.5時,y=6.則當t= 時函數(shù)y的值最小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=(k為常數(shù),且k≠5)經(jīng)過點A(1,3).
(1)求反比例函數(shù)的解析式;
(2)在x軸正半軸上有一點B,若△AOB的面積為6,求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式按字母x的降冪排列的是( )
A.﹣5x2﹣x2+2x2
B.ax3﹣2bx+cx2
C.﹣x2y﹣2xy2+y2
D.x2y﹣3xy2+x3﹣2y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩公司為“見義勇為基金會”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人數(shù)比乙公司的人數(shù)多20%.
請你根據(jù)以上信息,提出一個用分式方程解決的問題,并寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(3,4),點B為直線x=1上的動點,設B(-1,y).
(1)如圖①,若△ABO是等腰三角形且AO=AB時,求點B的坐標;
(2)如圖②,若點C(x,0)且-1<x<3,BC⊥AC垂足為點C;
①當x=0時,求tan∠BAC的值;
②若AB與y軸正半軸的所夾銳角為α,當點C在什么位置時tanα的值最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】大美山水“硒都恩施”是一張亮麗的名片,八方游客慕名而來,今年“五一”期間,恩施州共接待游客1450000人,將1450000用科學記數(shù)法表示為( 。
A.0.145×106B.14.5×105C.1.45×105D.1.45×106
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com