實踐與探索:
(1)比較下列算式結果的大。
42+32      2×4×3,(-2)2+12       2×(-2)×1,22+22     2×2×2
(2)通過觀察、歸納,比較:20062+20072      2×2006×2007

初二年數(shù)學試卷第4頁(共4頁)

 
(3)請你用字母、b寫出能反映上述規(guī)律的式子:               。

(1)>,>,>;(2)>;(3)當時,

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•衢州)課本中,把長與寬之比為
2
的矩形紙片稱為標準紙.請思考解決下列問題:
(1)將一張標準紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標準紙.請給予證明.
(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進行如下操作:
第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);
第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙),此時E點恰好落在AE邊上的點M處;
第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.
請你探究:矩形紙片ABCD是否是一張標準紙?請說明理由.
(3)不難發(fā)現(xiàn):將一張標準紙按如圖3一次又一次對開后,所得的矩形紙片都是標準紙.現(xiàn)有一張標準紙ABCD,AB=1,BC=
2
,問第5次對開后所得標準紙的周長是多少?探索直接寫出第2012次對開后所得標準紙的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(浙江衢州卷)數(shù)學(帶解析) 題型:解答題

課本中,把長與寬之比為的矩形紙片稱為標準紙.請思考解決下列問題:
(1)將一張標準紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標準紙.請給予證明.

(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進行如下操作:
第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);
第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙),此時E點恰好落在AE邊上的點M處;
第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.

請你探究:矩形紙片ABCD是否是一張標準紙?請說明理由.
(3)不難發(fā)現(xiàn):將一張標準紙按如圖3一次又一次對開后,所得的矩形紙片都是標準紙.現(xiàn)有一張標準紙ABCD,AB=1,BC=,問第5次對開后所得標準紙的周長是多少?探索直接寫出第2012次對開后所得標準紙的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年江蘇無錫市九年級第一學期期中考試數(shù)學試卷(解析版) 題型:解答題

課本中把長與寬之比為的矩形紙片稱為標準紙.請解決下列問題:

(1)將一張標準紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標準紙.請給予證明;

(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進行如下操作:

第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);

第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙) .此時E點恰好落在AE邊上的點M處;

第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.

請你研究,矩形紙片ABCD是否是一張標準紙?請說明理由.

(3)不難發(fā)現(xiàn),將一張標準紙如圖3一次又一次對開后,所得的矩形紙片都是標準紙.現(xiàn)有一張標準紙ABCD,AB=1,BC=,問第5次對開后所得標準紙的周長是多少?探索并直接寫出第2002次對開后所得標準紙的周長.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省中考真題 題型:解答題

課本中,把長與寬之比為的矩形紙片稱為標準紙.請思考解決下列問題:
(1)將一張標準紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標準紙.請給予證明.
(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進行如下操作:第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙),此時E點恰好落在AE邊上的點M處;第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.請你探究:矩形紙片ABCD是否是一張標準紙?請說明理由.
(3)不難發(fā)現(xiàn):將一張標準紙按如圖3一次又一次對開后,所得的矩形紙片都是標準紙.現(xiàn)有一張標準紙ABCD,AB=1,BC=,問第5次對開后所得標準紙的周長是多少?探索直接寫出第2012次對開后所得標準紙的周長.…


查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省衢州市中考數(shù)學試卷(解析版) 題型:解答題

課本中,把長與寬之比為的矩形紙片稱為標準紙.請思考解決下列問題:
(1)將一張標準紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標準紙.請給予證明.
(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進行如下操作:
第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);
第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙),此時E點恰好落在AE邊上的點M處;
第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.
請你探究:矩形紙片ABCD是否是一張標準紙?請說明理由.
(3)不難發(fā)現(xiàn):將一張標準紙按如圖3一次又一次對開后,所得的矩形紙片都是標準紙.現(xiàn)有一張標準紙ABCD,AB=1,BC=,問第5次對開后所得標準紙的周長是多少?探索直接寫出第2012次對開后所得標準紙的周長.

查看答案和解析>>

同步練習冊答案