【題目】如圖,Rt△AOB∽Rt△DOC,∠ABO=30°,∠AOB=∠COD=90°,MOA的中點,OA=4,將△COD繞點O旋轉(zhuǎn)一周,直線AD,CB交于點P,連接MP,則MP的最小值是_________

【答案】4-2

【解析】

根據(jù)相似三角形的判定定理證明COB∽△DOA,得到∠OBC=OAD,得到∠APB=AOB=90°,求出MSPS,根據(jù)三角形三邊關(guān)系解答即可.

如圖:

AB的中點S,連接MS、PS,

PS-MS≤PM≤MS+PS,

∵∠AOB=90°,OA=4,ABO=30°,

AB=2OA=8,OB=4,

∵∠AOB=COD=90°,

∴∠COB=DOA,

∵△AOB∽△DOC,

,

∴△COB∽△DOA,

∴∠OBC=OAD,

∵∠OBC+PBO=180°,

∴∠OAD+PBO=180°,AOB+APB=180°,

∴∠APB=AOB=90°,又SAB的中點,

PS=AB=4,

MOA的中點,SAB的中點,

MS=OB=,

MP的最小值為4-,

故答案為:4-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點在線段上運動(不與,重合),連接,作,于點.是等腰三角形,則的度數(shù)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接DE,AC

(1)求證:四邊形ACDE為平行四邊形;

(2)連接CE交AD于點O,若AC=AB=3,cosB=,求線段CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.

(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;

(2)設(shè)方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,ABCD,添加下列條件不能使四邊形ABCD成為平行四邊形的是( )

A.ABCDB.OBOD

C.BCD+ADC180°D.ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,FG、AC是直徑,AB是弦,FG⊥AB,垂足為點P,過點C的直線交AB的延長線于點D,交GF的延長線于點E,已知AB=4,⊙O的半徑為

(1)求線段AP的長;

(2)DE⊙O的切線,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個公共點,其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A為函數(shù) 圖象上一點,連結(jié)OA,交函數(shù) 的圖象于點B,點Cx軸上一點,且AO=AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(k0)的圖象經(jīng)過點A(﹣2,m),過點AABx軸于點B,且△AOB的面積為4.

(Ⅰ)求km的值;

(Ⅱ)設(shè)C(x,y)是該反比例函數(shù)圖象上一點,當(dāng)1x4時,求函數(shù)值y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案