【題目】如圖,在△ABC中,AB=400,BC=600,∠ABC=45°,在△ABC內(nèi)作一個(gè)內(nèi)接矩形DEGF(點(diǎn)E、F在邊BC上,點(diǎn)D、G分別在邊AB和AC上),則矩形DEFG的對角線EG最短為_____.
【答案】.
【解析】
如圖,作AR∥BC,BR⊥BC,連接CR,作BH⊥CR,過點(diǎn)H作PH∥BC,交RB于P,交AB于D,交AC于G.作HQ⊥BC于Q,DE⊥BC于E,GF⊥BC于F;根據(jù)垂線段最短,可得答案;
解:如圖,作AR∥BC,BR⊥BC,連接CR,作BH⊥CR,
過點(diǎn)H作PH∥BC,交RB于P,交AB于D,交AC于G.
作HQ⊥BC于Q,DE⊥BC于E,GF⊥BC于F
則四邊形DEFG是矩形,此時(shí)矩形的對角線最短.
(BH是垂線段,垂線段最短,易證EG=BH,故此時(shí)矩形的對角線EG最短).
在Rt△ARB中
∵AB=400,
∴BR=200,
又∵BC=600,
∴在Rt△RBC中,
CR=,
∴BH=,
∴EG=,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0,a、b、c為常數(shù))上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
x | …… | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | …… |
y | …… | 4 | 4 | m | 0 | …… |
則下列結(jié)論中:①拋物線的對稱軸為直線x=﹣1;②m=;③當(dāng)﹣4<x<2時(shí),y<0;④方程ax2+bx+c﹣4=0的兩根分別是x1=﹣2,x2=0,其中正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱點(diǎn)P為等值點(diǎn).例如點(diǎn)
(1,1),(-2,-2),(,),…,都是等值點(diǎn).已知二次函數(shù)的
圖象上有且只有一個(gè)等值點(diǎn) ,且當(dāng)m≤x≤3時(shí),函數(shù) 的最小值為-9,最大值為-1,則m的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:若,求m、n的值.
解: ,
,
,
.
根據(jù)你的觀察,探究下面的問題:
(1)己知,求的值.
(2)已知△ABC的三邊長a、b、c都是正整數(shù),且滿足,求邊c的最大值.
(3) 若己知,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-1,0),B(0,2),點(diǎn)C在x軸上,且∠ABC=90°.
(1)求點(diǎn)C的坐標(biāo);
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,使∠PAC=∠BCO?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形ABCD沿AC折疊,使點(diǎn)D與點(diǎn)E重合,AE交BC于點(diǎn)F,過點(diǎn)E作EG∥CD交AC于點(diǎn)G,交CF于點(diǎn)H,連接DG.
(1)求證:四邊形ECDG是菱形;
(2)若DG=6,AG=,求EH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙0的直徑,∠ACB=60°,連接AB,過A,B兩點(diǎn)分別作⊙O的切線,兩切線交于點(diǎn)P.若已知⊙0半徑為1,則△PAB的周長為( )
A. B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com