【題目】下列說法正確的有( 。

①所有的有理數(shù)都能用數(shù)軸上的點表示;

②符號不同的兩個數(shù)互為相反數(shù);

③有理數(shù)分為正數(shù)和負數(shù);

④兩數(shù)相減,差一定小于被減數(shù);

⑤兩數(shù)相加,和一定大于任何一個加數(shù).

A. 1 B. 2 C. 3 D. 4

【答案】A

【解析】①所有的有理數(shù)都能用數(shù)軸上的點表示是正確的;

②只有符號不同的兩個數(shù)叫做互為相反數(shù),故原來的說法錯誤;

③有理數(shù)分為正數(shù)、0和負數(shù),故原來的說法錯誤;

④如:20=2,故原來的說法錯誤;

⑤如:2+0=2,故原來的說法錯誤。

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,P是線段AB上的一點,在AB的同側作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,連接CD,點E、F、G、H分別是AC、AB、BD、CD的中點,順次連接E、F、G、H.

(1)猜想四邊形EFGH的形狀,直接回答,不必說明理由;

(2)當點P在線段AB的上方時,如圖2,在△APB的外部作△APC和△BPD,其他條件不變,(1)中的結論還成立嗎?說明理由;

(3)如果(2)中,∠APC=∠BPD=90°,其他條件不變,先補全圖3,再判斷四邊形EFGH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a>0)的對稱軸為直線x=1,且經(jīng)過點(﹣1,y1),(﹣2,y2),試比較y1和y2的大小:y1____y2(填“>”,“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的不斷發(fā)展,人與人的溝通方式也發(fā)生了很大的變化,盤錦市某中學九年級的一個數(shù)學興趣小組在本年級學生中進行“學生最常用的交流方式”的專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結果分為四類:A.面對面交談;B.微信和QQ等聊天軟件交流;C.短信與書信交流;D.電話交流.根據(jù)調(diào)查數(shù)據(jù)結果繪制成以下兩幅不完整的統(tǒng)計圖:

(1)本次調(diào)查,一共調(diào)查了 名同學,其中C類女生有 名,D類男生有 名;

(2)若該年級有學生150名,請根據(jù)調(diào)查結果估計這些學生中以“D.電話交流”為最常用的交流方式的人數(shù)約為多少?

(3)在本次調(diào)查中以“C.短信與書信交流”為最常用交流方式的幾位同學中隨機抽取兩名同學參加盤錦市中學生書信節(jié)比賽,請用列舉法求所抽取的兩名同學都是男同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)(x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AD=3

(1)求反比例函數(shù)的解析式;

(2)求cos∠OAB的值;

(3)求經(jīng)過C、D兩點的一次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(2a)3·(3a2)________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個n邊形的內(nèi)角和是720°,則n_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,它是一個8×10的網(wǎng)格,每個小正方形的邊長均為1 ,每個小正方形的頂點叫格點,△ABC的頂點均在格點上.

(1)畫出△ABC關于直線OM對稱的△ .

(2)畫出△ABC關于點O的中心對稱圖形△.

(3)△與△組成的圖形是軸對稱圖形嗎?如果是,請畫出對稱軸.△與△組成的圖形__________(填“是”或“不是”)軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩輛汽車分別從A、B兩地同時出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設甲、乙兩車與B地的路程分別為ykm,ykm,甲車行駛的時間為xh,y、y與x之間的函數(shù)圖象如圖所示,結合圖象解答下列問題:

1乙車休息了 h.

2求乙車與甲車相遇后y關于x的函數(shù)表達式,并寫出自變量x的取值范圍.

3當兩車相距40km時,求x的值.

查看答案和解析>>

同步練習冊答案