如圖16,在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,拋物線經(jīng)過三點.

(1)求過三點拋物線的解析式并求出頂點的坐標(biāo);

(2)在拋物線上是否存在點,使為直角三角形,若存在,直接寫出點坐標(biāo);若不存在,請說明理由;

(3)試探究在直線上是否存在一點,使得的周長最小,若存在,求出點的坐標(biāo);若不存在,請說明理由.

解:(1)直線軸交于點,與軸交于點

,························································································· 1分

都在拋物線上,

  

拋物線的解析式為························································ 3分

頂點······························································································· 4分

(2)存在··············································································································· 5分

············································································································· 7分

············································································································ 9分

(3)存在·············································································································· 10分

理由:

解法一:

延長到點,使,連接交直線于點,則點就是所求的點.

                       ····················································································· 11分

過點于點

點在拋物線上,

中,

,

中,

,··············································· 12分

設(shè)直線的解析式為

   解得

································································································ 13分

   解得 

在直線上存在點,使得的周長最小,此時.··· 14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,點A(4,4),點B、C分別在x軸、y軸的正半軸上,S四邊形OBAC=16.
(1)∠COA的值為
45°
45°

(2)求∠CAB的度數(shù);
(3)如圖2,點M、N分別是x軸正半軸及射線OA上一點,且OH⊥MN的延長線于H,滿足∠HON=∠NMO,請?zhí)骄績蓷l線段MN、OH之間的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖南省中考真題 題型:解答題

如圖①、②,在平面直角坐標(biāo)系中,一邊長為2的等邊三角形CDE恰好與坐標(biāo)系中的△OAB重合,現(xiàn)獎三角板CDE繞邊AB的中點G(G點也是DE的中點),按順時針方向旋轉(zhuǎn)180°到△C′ED的位置。
(1)求C′點的坐標(biāo);
(2)求經(jīng)過三點O、A、C′的拋物線的解析式;
(3)如圖③,⊙G是以AB為直徑的圓,過B點作⊙G的切線與x軸相交于點F,求切線BF的解析式;
(4)拋物線上是否存在一點M,使得S△AMF:S△OAB=16:3,若存在,請求出點M的坐標(biāo);若不存在,請說明理由。

圖1                                          圖2                                              圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案