【題目】某工廠為了擴(kuò)大生產(chǎn)規(guī)模,計(jì)劃購(gòu)買(mǎi)5臺(tái)兩種型號(hào)的設(shè)備,總資金不超過(guò)28萬(wàn)元,且要求新購(gòu)買(mǎi)的設(shè)備的日總產(chǎn)量不低于24萬(wàn)件,兩種型號(hào)設(shè)備的價(jià)格和日產(chǎn)量如下表.為了節(jié)約資金,問(wèn)應(yīng)選擇何種購(gòu)買(mǎi)方案?

A

B

價(jià)格(萬(wàn)元/臺(tái))

6

5

日產(chǎn)量(萬(wàn)件/臺(tái))

6

4

【答案】應(yīng)購(gòu)買(mǎi)型設(shè)備2臺(tái),型設(shè)備3臺(tái).

【解析】

由題意,A兩種型號(hào)設(shè)備所用款項(xiàng)+B兩種型號(hào)設(shè)備所用款項(xiàng)≤28A兩種型號(hào)設(shè)備的日產(chǎn)量+B兩種型號(hào)設(shè)備的日產(chǎn)量≥24,求出答案,找到最省錢(qián)的方案.

解:設(shè)購(gòu)買(mǎi)型設(shè)備為臺(tái),則購(gòu)買(mǎi)型設(shè)備為臺(tái),依題意得:

解得:

為整數(shù),

當(dāng)時(shí),購(gòu)買(mǎi)設(shè)備的總資金為6×2+5×3=27(萬(wàn)元)

當(dāng)時(shí),購(gòu)買(mǎi)設(shè)備的總資金為6×3+5×2=28(萬(wàn)元)

應(yīng)購(gòu)買(mǎi)型設(shè)備2臺(tái),型設(shè)備3臺(tái).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠以每千克200元的價(jià)格購(gòu)進(jìn)甲種原料360千克,用于生產(chǎn)AB兩種產(chǎn)品,生產(chǎn)1A產(chǎn)品或1B產(chǎn)品所需甲、乙兩種原料的千克數(shù)如下表:

產(chǎn)品/原料

A

B

甲(千克)

9

4

乙(千克)

3

10

乙種原料的價(jià)格為每千克300元,A產(chǎn)品每件售價(jià)3000元,B產(chǎn)品每件售價(jià)4200元,現(xiàn)將甲種原料全部用完,設(shè)生產(chǎn)A產(chǎn)品x件,B產(chǎn)品m件,公司獲得的總利潤(rùn)為y元.

1)寫(xiě)出mx的關(guān)系式;

2)求yx的關(guān)系式;

3)若使用乙種原料不超過(guò)510千克,生產(chǎn)A種產(chǎn)品多少件時(shí),公司獲利最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市舉行職工五人制足球聯(lián)賽,共賽 17 輪(即每隊(duì)均需參賽 17 場(chǎng)),記分辦法是勝一場(chǎng)得 3分,平一場(chǎng)得 1 分,負(fù)一場(chǎng)得 0 足球隊(duì)總積分為 16 分,且踢平場(chǎng)數(shù)是所負(fù)場(chǎng)數(shù)的整數(shù)倍,試推算 足球隊(duì)所負(fù)場(chǎng)數(shù)的情況有(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校與圖書(shū)館在同一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象信息,當(dāng)t=________分鐘時(shí)甲乙兩人相遇,甲的速度為________/分鐘;

(2)求出線段AB所表示的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知OAB在直角坐標(biāo)系中的位置如圖,點(diǎn)A在第一象限,點(diǎn)Bx軸正半軸上,OAOB6,∠AOB30°

1)求點(diǎn)A、B的坐標(biāo);

2)開(kāi)口向上的拋物線經(jīng)過(guò)原點(diǎn)O和點(diǎn)B,設(shè)其頂點(diǎn)為E,當(dāng)OBE為等腰直角三角形時(shí),求拋物線的解析式;

3)設(shè)半徑為2的⊙P與直線OA交于M、N兩點(diǎn),已知Pm,2)(m0),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有五張背面相同的卡片,正面分別印有圓、矩形、等邊三角形、菱形、平行四邊形(鄰邊不相等且不垂直),現(xiàn)將五張卡片正面朝下洗勻任意擺放,從中隨機(jī)抽取兩張,抽到的兩張卡片上都恰好印的既是中心對(duì)稱(chēng)又是軸對(duì)稱(chēng)的圖形的概率為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+4x軸交于點(diǎn)A,過(guò)點(diǎn)A的拋物線yax2+bx與直線y=﹣x+4交于另一點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1

1)該拋物線的解析式為;

2)如圖1,Q為拋物線上位于直線AB上方的一動(dòng)點(diǎn)(不與B、A重合),過(guò)QQPx軸,交x軸于P,連接AQ,MAQ中點(diǎn),連接PM,過(guò)MMNPM交直線ABN,若點(diǎn)P的橫坐標(biāo)為t,點(diǎn)N的橫坐標(biāo)為n,求nt的函數(shù)關(guān)系式;在此條件下,如圖2,連接QN并延長(zhǎng),交y軸于E,連接AE,求t為何值時(shí),MNAE

3)如圖3,將直線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)15度交拋物線對(duì)稱(chēng)軸于點(diǎn)C,點(diǎn)T為線段OA上的一動(dòng)點(diǎn)(不與O、A重合),以點(diǎn)O為圓心、以OT為半徑的圓弧與線段OC交于點(diǎn)D,以點(diǎn)A為圓心、以AT為半徑的圓弧與線段AC交于點(diǎn)F,連接DF.在點(diǎn)T運(yùn)動(dòng)的過(guò)程中,四邊形ODFA的面積有最大值還是有最小值?請(qǐng)求出該值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動(dòng)點(diǎn)M、N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)AB移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PMPN,MN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).

(1)當(dāng)t為何值時(shí),ΔMCN面積為2cm?

(2)是否存在某一時(shí)刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請(qǐng)說(shuō)明理由;

(3)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a、b、c是常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表所示,則下列結(jié)論中,正確的個(gè)數(shù)有( )

x

-7

-6

-5

-4

-3

-2

y

-27

-13

-3

3

5

3

①當(dāng)x<-4時(shí),y<3②當(dāng)x=1時(shí),y的值為-13;③-2是方程ax2+(b-2)x+c-7=0的一個(gè)根;④方程ax2+bx+c=6有兩個(gè)不相等的實(shí)數(shù)根.

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案