【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿BC的方向運動,且DE始終經(jīng)過點A,EFAC交于M點.

(1)求證:△ABE∽△ECM;

(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;

(3)當線段BE為何值時,線段AM最短,最短是多少?

【答案】(1)證明見解析;(2)能;BE=1(3)BE=3時,AM最短為.

【解析】

(1)由AB=AC,根據(jù)等邊對等角,可得∠B=∠C,又由△ABC≌△DEF與三角形外角的性質(zhì),易證得∠CEM=∠BAE,則可證得△ABE∽△ECM

(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AEAM,然后分別從AE=EMAM=EM去分析,注意利用全等三角形與相似三角形的性質(zhì)求解即可求得答案;

(3)首先設(shè)BE=x由△ABE∽△ECM,根據(jù)相似三角形的對應(yīng)邊成比例,易得CM=﹣+x=﹣x﹣3)2+繼而求得AM的值,利用二次函數(shù)的性質(zhì)即可求得線段AM的最小值

1)∵AB=AC,∴∠B=∠C

∵△ABC≌△DEF,∴∠AEF=∠B

又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;

(2)能

∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AEAM;

AE=EM則△ABE≌△ECM,∴CE=AB=5,∴BE=BCEC=6﹣5=1;

AM=EM,則∠MAE=∠MEA

∵∠MEA=∠B,∴∠MAE=∠B

∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=

綜上所述BE=1

(3)設(shè)BE=x

又∵△ABE∽△ECM,∴,∴CM=﹣+x=﹣x﹣3)2+,∴AM=5﹣CM=x﹣3)2+,∴當x=3,AM最短為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?

2)若學(xué)校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖一次函數(shù)y1=-x-2y2=x-4的圖象相交于點A

1)求點A的坐標;

2)若一次函數(shù)y1=-x-2y2=x-4的圖象與x軸分別相交于點BC,求ABC的面積.

3)結(jié)合圖象,直接寫出y1y2x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2x.

(1)在給定的平面直角坐標系中,畫出這個函數(shù)的圖象;

(2)根據(jù)圖象,寫出當y<0時,x的取值范圍;

(3)若將此圖象沿x軸向左平移3個單位,再沿y軸向下平移1個單位,請直接寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果

下面有三個推斷:

①當拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;

②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5

③若再次用計算機模擬此實驗,則當拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖:點(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BCx軸上,E是對角線BD的中點,函數(shù)y=(x>0)的圖象又經(jīng)過A、E兩點,點E的橫坐標為m,解答下列問題:

(1)k的值;

(2)求點A的坐標;(用含m代數(shù)式表示)

(3)當∠ABD=45°時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=mx2的圖像經(jīng)過點(1,2).

(1)求出m的值和頂點的坐標,并畫出這條拋物線;

(2)利用圖像回答:x取什么值時,拋物線在直線y=2的上方

(3)當-1≤x≤2時,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把RtABC繞點A逆時針旋轉(zhuǎn)44°,得到RtABC,點C恰好落在邊AB上,連接BB,則BBC′=__________________

查看答案和解析>>

同步練習(xí)冊答案