已知:如圖,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于點F,連接BF并延長交AC于點E,∠BAD=∠FCD。

求證:(1)△ABD≌△CFD;

(2)BE⊥AC.

 

【答案】

(1)證明見解析;(2) 證明見解析.

【解析】

試題分析:(1)由垂直的性質(zhì)推出∠ADC=∠FDB=90°,再由∠ACB=45°,推出∠ACB=∠DAC=45°,即可求得AD=CD,根據(jù)全等三角形的判定定理“ASA”,即可推出結(jié)論;(2)由(1)的結(jié)論推出BD=DF,根據(jù)AD⊥BC,即可推出∠DBF=∠DFB=45°,再由∠ACB=45°,通過三角形內(nèi)角和定理即可推出∠BEC=90°,即BE⊥AC.

試題解析:(1)∵AD⊥BC,

∴∠ADC=∠ADB=90°,

又∵∠ACB=45°,

∴∠DAC=45°,

∴∠ACB=∠DAC,

∴AD=CD,

在△ABD和△CFD中,∠BAD=∠FCD, AD=CD∠ADB=∠FDC,

∴△ABD≌△CFD;

(2)∵△ABD≌△CFD,

∴BD=FD,      

∴∠1=∠2,

又∵∠FDB=90°,

∴∠1=∠2=45°,

又∵∠ACD=45°,

∴△BEC中,∠BEC=90°,

∴BE⊥AC.

考點:1.等腰三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì);3.等腰直角三角形.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習冊答案