精英家教網 > 初中數學 > 題目詳情

【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉90°,得到△A′B′C,連接AA′,若∠1=20°,則∠B的度數是(
A.70°
B.65°
C.60°
D.55°

【答案】B
【解析】解:∵Rt△ABC繞直角頂點C順時針旋轉90°得到△A′B′C, ∴AC=A′C,
∴△ACA′是等腰直角三角形,
∴∠CAA′=45°,
∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
由旋轉的性質得∠B=∠A′B′C=65°.
故選:B.
根據旋轉的性質可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據等腰直角三角形的性質可得∠CAA′=45°,再根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠A′B′C,然后根據旋轉的性質可得∠B=∠A′B′C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,折線段AOB將面積為S的⊙O分成兩個扇形,大扇形、小扇形的面積分別為S1、S2 , 若 =0.618,則稱分成的小扇形為“黃金扇形”.生活中的折扇(如圖2)大致是“黃金扇形”,則“黃金扇形”的圓心角約為°.(精確到0.1)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某小商場以每件20元的價格購進一種服裝,先試銷一周,試銷期間每天的銷量(件)與每件的銷售價x(元/件)如下表:

x(元/件)

38

36

34

32

30

28

26

t(件)

4

8

12

16

20

24

28

假定試銷中每天的銷售量t(件)與銷售價x(元/件)之間滿足一次函數.
(1)試求t與x之間的函數關系式;
(2)在商品不積壓且不考慮其它因素的條件下,每件服裝的銷售定價為多少時,該小商場銷售這種服裝每天獲得的毛利潤最大?每天的最大毛利潤是多少?(注:每件服裝銷售的毛利潤=每件服裝的銷售價﹣每件服裝的進貨價)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=x+m的圖象與x軸和y軸分別交于點A和點B與正比例函數圖象交于點P(2,n).

(1)mn的值;

(2)POB的面積;

(3)在直線OP上是否存在異與點P的另一點C,使得OBCOBP的面積相等?若存在,請求出C點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經歷了從虧損到盈利過程.下面的二次函數圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與銷售時間t(月)之間的關系(即前t個月的利潤總和s和t之間的關系).根據圖象提供的信息,解答下列問題:
(1)由已知圖象上的三點坐標,求累積利潤s(萬元)與時間t(月)之間的函數關系式;
(2)求截止到幾月末公司累積利潤可達到30萬元;
(3)求第8個月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解下列方程:
(1)(3x+5)2﹣(x﹣9)2=0;
(2)3x2﹣4x﹣1=0.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中,、的垂直平分線相交于三角形內一點,下列結論中,錯誤的是( )

A. 的垂直平分線上

B. 、都是等腰三角形

C.

D. 、、的距離相等

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是二次函數y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x= ,且經過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2 . 上述說法正確的是(
A.①②④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,,,,給出下列結論:①;;.其中正確的結論是(

A. ①② B. ②③ C. ①②③ D. ②③④

查看答案和解析>>

同步練習冊答案