如圖,AB=AD,BC=DC,要證∠B=∠D,則需要連接
AC
AC
,從而可證
△ABC
△ABC
△ADC
△ADC
全等.
分析:連接AC,根據(jù)AB=AD,BC=DC,AC=AC即可證明△ABC≌△ADC,于是得到∠B=∠D.
解答:解:連接AC,
在△ABC和△ADC中,
AB=AD
BC=CD
AC=AC
,
∴△ABC≌△ADC(SSS),
∴∠B=∠D.
故答案為AC,△ABC,△ADC.
點評:本題主要考查全等三角形的判定與性質(zhì)的知識點,解答本題的關(guān)鍵是熟練掌握其判定定理,此題基礎(chǔ)題,比較簡單.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB=AD,BC=CD,AC,BD相交于E,如果不再添加輔助線,不再標注其他字母,你能找出幾對全等的三角形?就其中一對三角形全等給出完整的證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,AB=AD,∠B=∠D,∠BAC=∠DAE,AC與AE相等嗎?
小明的思考過程如下:
AB=AD
∠B=∠D
△ABC≌△ADE
AC=AE
∠BAC=∠DAE
說明每一步的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,AB=AD,BE=DE,∠1=∠2,則圖中全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB=AD,CB=CD,E、F分別是AB、AD的中點.求證:CE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:AB=AD,∠ABC=∠ADC,EF過點C,BE⊥EF于E,DF⊥EF于F,BE=DF.求證:CE=CF.

查看答案和解析>>

同步練習冊答案