【題目】某超市銷售一種成本為每臺(tái)20元的臺(tái)燈,規(guī)定銷售單價(jià)不低于成本價(jià),又不高于每臺(tái)32元.銷售中平均每月銷售量y(臺(tái))與銷售單價(jià)x(元)的關(guān)系可以近似地看做一次函數(shù),如下表所示:
x | 22 | 24 | 26 | 28 |
y | 90 | 80 | 70 | 60 |
(1)請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)為了實(shí)現(xiàn)平均每月375元的臺(tái)燈銷售利潤,這種臺(tái)燈的售價(jià)應(yīng)定為多少?這時(shí)每月應(yīng)購進(jìn)臺(tái)燈多少個(gè)?
(3)設(shè)超市每月臺(tái)燈銷售利潤為ω(元),求ω與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),ω的值最大?最大值是多少?
【答案】(1)y=﹣5x+200;(2)這種臺(tái)燈的售價(jià)應(yīng)定25元,這時(shí)每月應(yīng)購進(jìn)臺(tái)燈75個(gè);(3)當(dāng)x=30時(shí),ω取得最大值,最大值是500
【解析】
(1)根據(jù)表格中的數(shù)據(jù)可以求得y與x之間的函數(shù)關(guān)系式;
(2)根據(jù)題意可以得到相應(yīng)的方程,從而可以解答本題;
(3)根據(jù)題意可以求得ω與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),ω的值最大,最大值是多少.
(1)設(shè)y與x之間的函數(shù)關(guān)系式是y=kx+b,
,得,
即y與x之間的函數(shù)關(guān)系式是y=-5x+200;
(2)由題意可得,
(x-20)(-5x+200)=375,
解得,x1=25,x2=35(舍去),
y=-5×25+200=75,
答:這種臺(tái)燈的售價(jià)應(yīng)定25元,這時(shí)每月應(yīng)購進(jìn)臺(tái)燈75個(gè);
(3)由題意可得,
ω=(x-20)(-5x+200)=-5(x-30)2+500,
∵20≤x≤32,
∴當(dāng)x=30時(shí),ω取得最大值,最大值是500.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)M在第二象限,且經(jīng)過點(diǎn) A(1,0)和點(diǎn) B(0,2).則
(1)a 的取值范圍是________;
(2)若△AMO的面積為△ABO面積的倍時(shí),則a的值為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共個(gè),小李做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,如表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù) | |||||||
摸到白球的次數(shù) | |||||||
摸到白球的頻率 |
請(qǐng)估計(jì):當(dāng)實(shí)驗(yàn)次數(shù)為次時(shí),摸到白球的頻率將會(huì)接近________;(精確到)
假如你摸一次,你摸到白球的概率(摸到白球)________;
如何通過增加或減少這個(gè)不透明盒子內(nèi)球的具體數(shù)量,使得在這個(gè)盒子里每次摸到白球的概率為?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是長方形,將長方形ABCD折疊,如圖①所示,點(diǎn)B落在AD邊上的點(diǎn)E處,折痕為FG,將圖②折疊,點(diǎn)C與點(diǎn)E重合,折痕為PH.
(1)在圖②中,證明:EH=EP;
(2)若EF=6,EH=8,FH=10,求長方形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(3,0),對(duì)稱軸是直線x=﹣2,與y軸的交點(diǎn)(0,﹣3).
(1)求拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo);
(2)求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABD,△ACE都是等邊三角形,
(1)求證:△ABE≌△ADC;
(2)若∠ACD=15°,求∠AEB的度數(shù);
(3)如圖2,當(dāng)△ABD與△ACE的位置發(fā)生變化,使C、E、D三點(diǎn)在一條直線上,求證:AC∥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)鋼筋三角架三邊長分別為,,,現(xiàn)在要做一個(gè)和它相似的鋼筋三角架,而只有長為和的兩根鋼筋,要求以其中的一根為一邊,從另一根上截兩段(允許有余料)作為另兩邊,則不同的截法有( )
A. 一種 B. 兩種 C. 三種 D. 四種或四種以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個(gè)無蓋的長方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))
(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時(shí),裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長多大時(shí),總費(fèi)用最低,最低為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com