分析 根據(jù)垂徑定理和勾股定理求得正要想使正方體的體積最大,那么圖2的中間4個正方形組成的矩形的四個頂點就應(yīng)該都在圓上,設(shè)正方形的邊長為x,根據(jù)勾股定理求出x即可.
解答 解:根據(jù)勾股定理求得正要想使正方體的體積最大,那么圖2的中間4個正方形組成的矩形的四個頂點就應(yīng)該都在圓上,設(shè)正方形的邊長為x,
連接AC,則AC是直徑,
AC=17,
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2,
172=x2+(4x)2,
x=√17,
因此正方體的體積就是√17×√17×√17=17√17cm3.
點評 本題主要考查了正方形的性質(zhì)及垂徑定理等知識點,本題中根據(jù)垂徑定理求出小正方形的邊長是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
+18 | -6 | +15 | 0 | -12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com