如圖,已知直線 l1∥l2,且 l3和l1、l2分別交于A、B 兩點(diǎn),l4和l1、l2分別交于D、C 兩點(diǎn),點(diǎn)P在直線AB上且點(diǎn)P和A、B不重合,PD和DM的夾角記為∠1,PC和CN的夾角記為∠2,PC和PD的夾角記為∠3.
(1)當(dāng)∠1=25°,∠3=60°時(shí),求∠2的度數(shù);
(2)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠1、∠2、∠3三個(gè)角之間的相等關(guān)系是
∠3=∠1+∠2
∠3=∠1+∠2

(3)如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),∠1、∠2、∠3三個(gè)角之間的相等關(guān)系是
當(dāng)點(diǎn)P在l1上方時(shí)∠3=∠2-∠1,當(dāng)點(diǎn)P在l2下方時(shí)∠3=∠1-∠2
當(dāng)點(diǎn)P在l1上方時(shí)∠3=∠2-∠1,當(dāng)點(diǎn)P在l2下方時(shí)∠3=∠1-∠2

(4)如果直線l3向左平移到l4左側(cè),其它條件不變,∠1、∠2、∠3三個(gè)角之間的相等關(guān)系是
當(dāng)點(diǎn)P在A、B兩點(diǎn)之間時(shí)∠1+∠2+∠3=360°,當(dāng)點(diǎn)P在l1上方時(shí)∠3=∠1-∠2,當(dāng)點(diǎn)P在l2下方時(shí)∠3=∠2-∠1.
當(dāng)點(diǎn)P在A、B兩點(diǎn)之間時(shí)∠1+∠2+∠3=360°,當(dāng)點(diǎn)P在l1上方時(shí)∠3=∠1-∠2,當(dāng)點(diǎn)P在l2下方時(shí)∠3=∠2-∠1.

(其中(2)、(3)、(4)均只要寫出結(jié)論,不要求說(shuō)明).
分析:(1)延長(zhǎng)DP交直線l2于E,根據(jù)平行線得出∠1=∠DEC,根據(jù)三角形外角性質(zhì)求出即可;
(2)延長(zhǎng)DP交直線l2于E,根據(jù)平行線得出∠1=∠DEC,根據(jù)三角形外角性質(zhì)求出即可;
(3)畫出圖形,延長(zhǎng)DP交直線l2于E,根據(jù)平行線得出∠1=∠DEC,根據(jù)三角形外角性質(zhì)求出即可;
(4)畫出圖形,延長(zhǎng)DP交直線l2于E,根據(jù)平行線得出∠1=∠DEC,根據(jù)三角形外角性質(zhì)求出即可.
解答:解:(1)延長(zhǎng)DP交直線l2于E,
∵直線 l1∥l2,∠1=25°,
∴∠DEC=∠1=25°,
∵∠3=60°,
∠2=∠3-∠1=35°;
            
(2)∠3=∠1+∠2,
理由是:∵直線 l1∥l2,
∴∠DEC=∠1,
∴∠3=∠2+∠DEC=∠1+∠2,
故答案為:∠3=∠2+∠1.
    
(3)故答案為:當(dāng)點(diǎn)P在l1上方時(shí)∠3=∠2-∠1,
當(dāng)點(diǎn)P在l2下方時(shí)∠3=∠1-∠2;

(4)故答案為:當(dāng)點(diǎn)P在A、B兩點(diǎn)之間時(shí),∠1+∠2=∠3,當(dāng)點(diǎn)P在l1上方時(shí)∠3=∠1-∠2,當(dāng)點(diǎn)P在l2下方時(shí)∠3=∠2-∠1.
點(diǎn)評(píng):本題考查了平行線性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,用了運(yùn)動(dòng)觀點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,已知直線l1,l2,l3相交于點(diǎn)O,∠1=35°,∠2=25°,則∠3等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•郯城縣一模)如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個(gè)頂點(diǎn)分別在四條直線上,則cosα=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•黔南州)如圖,已知直線l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知直線l1∥l2,且l3、l4和l1、l2分別交于點(diǎn)A、B和點(diǎn)C、D,點(diǎn)P在AB上,設(shè)∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之間的關(guān)系,并說(shuō)明你的結(jié)論的正確性.
(2)若點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí)(點(diǎn)P和A、B不重合),∠1、∠2、∠3 之間的關(guān)系
不會(huì)
不會(huì)
發(fā)生變化(填會(huì)或不會(huì))
(3)如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),(點(diǎn)P和A、B不重合)
①當(dāng)點(diǎn)P在射線AM上時(shí),猜想∠1、∠2、∠3之間的關(guān)系為
∠2=∠3-∠1
∠2=∠3-∠1
;
②當(dāng)點(diǎn)P在射線BN上時(shí),猜想∠1、∠2、∠3之間的關(guān)系為
∠3=∠1-∠2
∠3=∠1-∠2
(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)C和D,在直線l3上有點(diǎn)P(點(diǎn)P與點(diǎn)C、D不重合),點(diǎn)A在直線l1上,點(diǎn)B在直線l2上.
(1)如果點(diǎn)P在C、D之間運(yùn)動(dòng)時(shí),試說(shuō)明∠PAC+∠PBD=∠APB;
(2)如果點(diǎn)P在直線l1的上方運(yùn)動(dòng)時(shí),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
(3)如果點(diǎn)P在直線l2的下方運(yùn)動(dòng)時(shí),∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案