若用完全平方公式計(jì)算如下結(jié)果,(x-m)2=x2+4x+a,則m=
-2
-2
,a=
4
4
分析:根據(jù)完全平方公式展開(kāi),即可得出方程-2m=4,a=m2,求出即可.
解答:解:∵(x-m)2=x2-2mx+m2=x2+4x+a
∴-2m=4,a=m2,
∴m=-2,a=4,
故答案為:-2,4.
點(diǎn)評(píng):本題考查了對(duì)完全平方公式的應(yīng)用,關(guān)鍵是得出方程-2m=4,a=m2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖2中的陰影部分的正方形的邊長(zhǎng)等于
m-n
m-n

(2)請(qǐng)用兩種不同的方法求圖2中陰影部分的面積.
(m-n)2
(m-n)2
;
(m+n)2-4mn
(m+n)2-4mn

(3)觀察圖2你能寫(xiě)出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?
(m+n)2,(m-n)2,mn
(m-n)2=(m+n)2-4mn
(m-n)2=(m+n)2-4mn

(4)運(yùn)用你所得到的公式,計(jì)算若mn=-2,m-n=4,求(m+n)2的值.
(5)用完全平方公式和非負(fù)數(shù)的性質(zhì)求代數(shù)式x2+2x+y2-4y+7的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

圖1是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.

(1)你認(rèn)為圖2中的陰影部分的正方形的邊長(zhǎng)等于______?
(2)請(qǐng)用兩種不同的方法求圖2中陰影部分的面積.
①______;
②______.
(3)觀察圖2你能寫(xiě)出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?
(m+n)2,(m-n)2,mn______.
(4)運(yùn)用你所得到的公式,計(jì)算若mn=-2,m-n=4,求(m+n)2的值.
(5)用完全平方公式和非負(fù)數(shù)的性質(zhì)求代數(shù)式x2+2x+y2-4y+7的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案