【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,把△ABC繞AB邊上的點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°),得到Rt△A′DE,A′C′交AB于點(diǎn)E,若AD=BE,則AD的長(zhǎng)為_____
【答案】3或.
【解析】
在Rt△ABC中,由勾股定理求得AB=10,由旋轉(zhuǎn)的性質(zhì)可知AD=A′D,設(shè)AD=A′D=BE=x,則DE=10-2x,根據(jù)得到Rt△A′DE,可以分兩種情況進(jìn)行討論.
Rt△ABC中,由勾股定理求
由旋轉(zhuǎn)的性質(zhì),設(shè)AD=A′D=BE=x,則DE=102x,
∵△ABC繞AB邊上的點(diǎn)D順時(shí)針旋轉(zhuǎn)得到Rt△A′DE,
①∠A′=∠A,
∴△A′DE∽△ACB,
∴即 解得x=3,
②∠A′=∠A,
∴△A′ED∽△ACB,
∴即 解得
故答案為:3或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,點(diǎn)E、F分別在BC、AB邊上,且∠BEF+∠BFE﹣∠B=∠A.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長(zhǎng)EF交CA的延長(zhǎng)線于D,點(diǎn)G是線段CE上一點(diǎn),且∠CDE=∠BDG=90°,若∠BFE=2∠DBA,求∠DGB的度數(shù).
(3)如圖3,在(2)的條件下,EG=AC,CD=8,求△BDG的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AOB,△COD是等腰直角三角形,點(diǎn)D在AB上.
(1)求證:△ACO≌△BDO;
(2)若∠BOD=30°,求∠ACD度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫(kù)的岸堤(岸堤足夠長(zhǎng))為一邊,用總長(zhǎng)為80米的圍網(wǎng)在水庫(kù)中圍成發(fā)如圖所示①②③的三塊矩形區(qū)域,而且這三塊矩形區(qū)域面積相等.已知矩形區(qū)域ABCD的面積為30m2,設(shè)BC的長(zhǎng)度為xm,所列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(x>0,k>0)的圖象經(jīng)過(guò)點(diǎn)A(1,a),B(m,n)(m>0),分別過(guò)A、B兩點(diǎn)作y軸垂線,垂足分別為D,C,且CD=.
(1)求k關(guān)于n的關(guān)系式;
(2)當(dāng)△ABC面積為2時(shí),求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A是直線y=2x+1與反比例函數(shù)(x>0)圖象的交點(diǎn),且點(diǎn)A的橫坐標(biāo)為1.
(1)求k的值;
(2)如圖1,雙曲線(x>0)上一點(diǎn)M,若S△AOM=4,求點(diǎn)M的坐標(biāo);
(3)如圖2所示,若已知反比例函數(shù)(x>0)圖象上一點(diǎn)B(3,1),點(diǎn)P是直線y=x上一動(dòng)點(diǎn),點(diǎn)Q是反比例函數(shù)(x>0)圖象上另一點(diǎn),是否存在以P、A、 B、Q為頂點(diǎn)的平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△AC 內(nèi)接于⊙O,D 是弧BC上一點(diǎn),OD⊥BC,垂足為 H.
(1)如圖 1,當(dāng)圓心 O 在 AB 邊上時(shí),求證:AC=2OH;
(2)如圖 2,當(dāng)圓心 O 在△ABC 外部時(shí),連接 AD、CD,AD 與 BC 交于點(diǎn) P.求證:∠ACD=∠APB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線(k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線上,則a的值是
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com