【題目】如圖,AOB=30°,點M,N分別在邊OAOB上,OM=5ON=12,點P,Q分別在邊OB,OA上運動,連接MP,PQQN,則MP+PQ+QN的最小值為 ______

【答案】13

【解析】試題分析:首先作M關于OB的對稱點M′,作N關于OA的對稱點N′,連接M′N′,即為MP+PQ+QN的最小值,易得△ONN′為等邊三角形,△OMM′為等邊三角形,∠N′OM′=90°,繼而求得答案.

解:作M關于OB的對稱點M′,作N關于OA的對稱點N′,連接M′N′,即為MP+PQ+QN的最小值.

根據(jù)軸對稱的定義可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,OM′=OM=5,ON′=ON=12,

∴△ONN′為等邊三角形,△OMM′為等邊三角形,

∴∠N′OM′=90°,

Rt△M′ON′中,M′N′==13

故答案為:13

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:a2﹣3a=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BAC=90°,AB=AC,點D是AB的中點,連接CD,過B作BECD交CD的延長線于點E,連接AE,過A作AFAE交CD于點F.

(1)求證:AE=AF;

(2)求證:CD=2BE+DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家冰箱冷凍室的溫度為-5℃,調高4℃后的溫度為( 。.
A.4℃
B.9℃
C.-1℃
D.-9℃

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a0)與x軸、y軸分別交于點A(1,0),B(3,0)、C(0,3)三點.

(1)直接寫出拋物線的解析式 ;

(2)點D(2,m)在第一象限的拋物線上,連接BC、BD,試問,在對稱軸左側的拋物線上是否存在一點P,滿足PBC=DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由.

(3)如圖2,在(2)的條件下,將BOC沿x軸正方向以每秒1個單位長度的速度向右平移,記平移后的三角形為BOC,在平移過程中,BOCBCD重疊的面積記為S,設平移的時間為t秒(0t3),試求S與t之間的函數(shù)關系式?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若點A2a)在第四象限內,則點Ba,2)所在的象限是(

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,其中正確的個數(shù)是( 。

(1)有理數(shù)中,有絕對值最小的數(shù);(2)有理數(shù)不是整數(shù)就是分數(shù);(3)當a表示正有理數(shù),則-a一定是負數(shù);(4)a是大于-1的負數(shù),則a2小于a3

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知MB=ND,MBA=NDC,下列條件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地教育部門對九年級學生的“學習態(tài)度”進行了一次抽樣調查,把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣,要求被調查的學生從A、B、C三項中必選且只能選擇一項,結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

(1)此次抽樣調查中,共調查了 名學生;

(2)將圖①補充完整;

(3)求出圖②中C級所占的圓心角的度數(shù);

(4)根據(jù)抽樣調查結果,請你估計該地8000名九年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

同步練習冊答案