問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結(jié)論.
探究一:
(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
此時,顯然能搭成一種等腰三角形。所以,當(dāng)時,
(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形
所以,當(dāng)時,
(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形
所以,當(dāng)時,
(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形
所以,當(dāng)時,
綜上所述,可得表①
| 3 | 4 | 5 | 6 |
| 1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表②中)
(2) 分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(只需把結(jié)果填在表②中)
| 7 | 8 | 9 | 10 |
|
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……
解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(設(shè)分別等于、、、,其中是整數(shù),把結(jié)果填在表③中)
|
|
|
|
|
|
問題應(yīng)用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(要求寫出解答過程)
其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結(jié)果)
科目:初中數(shù)學(xué) 來源: 題型:
小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
月均用水量(單位:t) | 頻數(shù) | 百分比 |
| 2 | 4% |
| 12 | 24% |
| ||
| 10 | 20% |
| 12% | |
| 3 | 6% |
| 2 | 4% |
(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)如果家庭月均用水量“大于或等于4t且小于7t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶?
(3)從月均用水量在,這兩個范圍內(nèi)的樣本家庭中任意抽取2個,求抽取出的2個家庭來自不同范圍的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,平面直角坐標(biāo)系的原點O是正方形ABCD的中心,頂點A,B的坐標(biāo)分別為(1,1)、(-1,1),
把正方形ABCD繞原點O逆時針旋轉(zhuǎn)45°得到正方形A'B'C'D'則正方形ABCD與正方形A'B'C'D' 重疊部分形成的正八邊形的邊長為_____________________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小穎和小麗做“摸球”游戲:在一個不透明的袋子中裝有編號為1~4的四個球(除編號外都相同),從中隨機(jī)摸出一個球,記下數(shù)字后放回,再從中摸出一個球,記下數(shù)字。若兩次數(shù)字之和大于5,則小穎勝,否則小麗勝。這個游戲?qū)﹄p方公平嗎?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在端午節(jié)道來之前,學(xué)校食堂推薦了A,B,C三家粽子專賣店,對全校師生愛吃哪家店的粽子作調(diào)查,以決定最終向哪家店采購. 下面的統(tǒng)計量中,最值得關(guān)注的是【 】
A. 方差 B. 平均數(shù) C. 中位數(shù) D. 眾數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
二次函數(shù)的圖象在2<<3這一段位于軸的下方,在6<<7這一段位于軸的上方,則的值為【 】
A. 1 B. -1 C. 2 D. -2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過原點O作∠AOC的平分線交AB于點D,連接DC,過點D作DE⊥DC,交OA于點E.
(1)求過點E、D、C的拋物線的解析式;
(2)將∠EDC繞點D按順時針方向旋轉(zhuǎn)后,角的一邊與y軸的正半軸交于點F,另一邊與線段OC交于點G.如果EF=2OG,求點G的坐標(biāo).
(3)對于(2)中的點G,在位于第一象限內(nèi)的該拋物線上是否存在點Q,使得直線GQ與AB的交點P與點C、G構(gòu)成的△PCG是等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com