如圖1,矩形ABCD中,AB=21,AD=12,E是CD邊上的一點(diǎn),CE=5,M是BC邊上的中點(diǎn),動點(diǎn)P從點(diǎn)A出發(fā),沿AB邊以每秒1個(gè)單位長度的速度向終點(diǎn)B運(yùn)動,連結(jié)PM.設(shè)動點(diǎn)P的運(yùn)動時(shí)間是t秒.

(1)求線段AE的長;

(2)當(dāng)△ADE與△PBM相似時(shí),求t的值;

(3)如圖2,連接EP,過點(diǎn)P作PH⊥AE于H.①當(dāng)EP平分四邊形PMEH的面積時(shí),求t的值;②以PE為對稱軸作線段BC的軸對稱圖形B′C′,當(dāng)線段B′C′與線段AE有公共點(diǎn)時(shí),寫出t的取值范圍(直接寫出答案).

 

【答案】

(1)AE=20;(2)t=13或t=;(3)①t=≤t≤20.

【解析】

試題分析:(1)在直角三角形ADE中,已知AD=12,DE=16,根據(jù)勾股定理可求出AE的值;(2)分兩種情況討論:一、當(dāng)∠DAE=∠PMB時(shí),根據(jù)相似三角形的性質(zhì):相似三角形的對應(yīng)邊的比相等.即可求出t的值;二、當(dāng)∠DAE=∠MPB時(shí),由相似三角形的性質(zhì)即可求出t的值.(3)①根據(jù)題意得出SEHP=SEMP,求出t的兩個(gè)值,再根據(jù)t的取值范圍即可求出t的值;②根據(jù)PE為對稱軸作線段BC的軸對稱圖形B′C′,當(dāng)點(diǎn)B′在線段AE上時(shí),如圖3所示,由勾股定理求得EB′=13,AB′=7,根據(jù)題意可證得△AB′N與△ADE相似,根據(jù)相似三角形對應(yīng)邊的比相等,可求出AN=5.6,NB′=4.2,則PN=t-5.6,PB′=21-t,再根據(jù)勾股定理可求出t的值為.當(dāng)點(diǎn)C′在線段AE上時(shí),如圖4,則AC′=20-5=15,可證△AC′F與△ADE相似,可分別求出AF,C′F的值,在△PFB′中,利用勾股定理可求PF的值,從而求出AP的值,即求出t的值,所以有≤t≤20.

 

試題解析:(1)∵ABCD是矩形,∴∠D=90°,∴AE2=AD2+DE2,∵AD=12,DE=16,∴AE=20;

(2)∵∠D=∠B=90°,∴△ADE與△PBM相似時(shí),有兩種可能;

當(dāng)∠DAE=∠PMB時(shí),有=,即=,解得:t=13;

當(dāng)∠DAE=∠MPB時(shí),有=,即=,解得t=;

(3)①由題意得:SEHP=SEMP,

××(20﹣t)=×12×(5+21﹣t)﹣×6×(21﹣t)﹣×6×5,

解得:t=

∵0<t<21,

∴t=

②根據(jù)題意得:≤t≤20.

考點(diǎn):1、勾股定理;2、相似三角形的判定與性質(zhì);3、軸對稱的性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,連接AC,如果O為△ABC的內(nèi)心,過O作OE⊥AD于E,作OF⊥CD于F,則矩形OFDE的面積與矩形ABCD的面積的比值為( 。
A、
1
2
B、
2
3
C、
3
4
D、不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,AD=2.點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P以每秒2個(gè)單位的速度沿A→B→C→D的方向運(yùn)動;點(diǎn)Q以每秒1個(gè)單位的速度沿A→D→C的方向運(yùn)動,當(dāng)P、精英家教網(wǎng)Q兩點(diǎn)相遇時(shí),它們同時(shí)停止運(yùn)動.設(shè)P、Q兩點(diǎn)運(yùn)動的時(shí)間為x(秒),△APQ的面積為S(平方單位).
(1)點(diǎn)P、Q從出發(fā)到相遇所用的時(shí)間是
 
秒.
(2)求S與x之間的函數(shù)關(guān)系式.
(3)當(dāng)S=
72
時(shí),求x的值.
(4)當(dāng)△AQP為銳角三角形時(shí),求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣東模擬)如圖,在矩形ABCD中,AC、BD交于點(diǎn)O,∠AEC=90°,連接OE,OF平分∠DOE交DE于F.
求證:OF垂直平分DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=3,BC=4,EF過AC、BD的交點(diǎn)O,則圖中陰影部分的面積為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南京)如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α=
20°
20°

查看答案和解析>>

同步練習(xí)冊答案