如圖,在正方形ABCD中,對角線AC,BD相交于O,AB=2,E是BC中點,點P在對角線AC上滑動,則BP+EP的最小值是


  1. A.
    數(shù)學公式
  2. B.
    2
  3. C.
    數(shù)學公式
  4. D.
    3
C
分析:根據(jù)正方形沿對角線的對稱性,可得可得無論P在什么位置,都有PD=PB;故均有BP+EP=PD+PE成立;所以原題可以轉化為求BP+PD的最小值問題,分析易得連接DE與AC,求得交點就是要求的點的位置;進而可得BP+EP=DE==,可得答案.
解答:由正方形的對角線互相垂直平分,可得無論P在什么位置,都有PD=PB;
故均有BP+EP=PD+PE成立;
連接DE與AC,所得的交點,即為BP+EP的最小值時的位置,
此時BP+EP=DE==;故選C
點評:主要考查了正方形中的最小值問題.解決此類問題關鍵是利用圖形的軸對稱性把所求的兩條線段和轉化為一條線段的長度,通常是以動點所在的直線作為對稱軸作所求線段中一條線段的對稱圖形來轉化關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案