如圖,AB為等腰直角△ABC的斜邊(AB為定長(zhǎng)線段),O為AB的中點(diǎn),P為AC延長(zhǎng)線上的一
個(gè)動(dòng)點(diǎn),線段PB的垂直平分線交線段OC于點(diǎn)E,D為垂足,當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),給出下列四個(gè)結(jié)論:
①E為△ABP的外心; ②△PBE為等腰直角三角形;
③PC·OA = OE·PB; ④CE + PC的值不變.
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
C
【解析】解:①∵CO為等腰Rt△ABC斜邊AB上的中線,
∴CO垂直平分AB;
又∵DE平分PB,即E點(diǎn)是AB、BP兩邊中垂線的交點(diǎn),
∴E點(diǎn)是△ABP的外心,故①正確;
②如圖,連接AE;
由①知:AE=EP=EB,則∠EAP=∠EPA,∠EPB=∠EBP,∠EAB=∠EBA;
∵∠PAB=45°,即∠EAP+∠EPA+∠EAB+∠EBA=2(∠EAP+∠EAB)=2∠PAB=90°,
由三角形內(nèi)角和定理知:∠EPB+∠EBP=90°,即∠EPB=∠EBP=45°,
∴△PEB是等腰直角三角形;故②正確;
③∵∠PBE=∠ABC=45°,
∴∠EBO=∠PBC=45°-∠CBE,
又∵∠EOB=∠PCB=90°,
∴△BPC∽△BEO,得:PC/OE =BC/OB ,即PC•OB=OE•BC⇒PC•OA=OE•BC;
故③錯(cuò)誤;
④過(guò)E作EM⊥OC,交AC于M;
易知:△EMC是等腰直角三角形,即MC=EC,∠PME=45°;
∴∠PEM=∠BEC=90°+∠PEC,
又∵EC=ME,PE=BE,
∴△PME≌△BCE(SAS),得PM=BC,即PM是定值;
由于PM=CM+PC=EC+PC,所以CE+PC的值不變,故④正確;
因此正確的結(jié)論是①②④,故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
A、1個(gè) | B、2個(gè) | C、3個(gè) | D、4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012年浙江省金華市義烏市中考數(shù)學(xué)模擬試卷(5月份)(解析版) 題型:選擇題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市中考數(shù)學(xué)模擬試卷(23)(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com