請你仔細閱讀下列材料:讓我們來規(guī)定一種運算:
.
ab
cd
.
=ad-bc,例如
.
23
45
.
=2×5-3×4=10-12=-2,再如
.
x2
14
.
=4x-2,按照這種運算的規(guī)定,請你解答下列各個問題:
(1)填空
.
-12
-11
.
=
1
1

(2)x=
1
3
1
3
時,
.
x1-x
12
.
=0
(3)求x的值,使
.
x-12
 33
.
=
.
x-2
1-1
.
分析:(1)根據(jù)規(guī)定運算的方法,把相應字母換成數(shù)據(jù)進行計算即可得解;
(2)根據(jù)規(guī)定運算的方法,整理得到關于x的方程,然后解關于x的一元一次方程即可;
(3)根據(jù)規(guī)定運算的方法,整理得到關于x的方程,然后解關于x的一元一次方程.
解答:解:(1)根據(jù)題意得,
.
-12
-11
.
=(-1)×1-(-1)×2=-1+2=1;

(2)2x-(1-x)=0,
去括號得,2x-1+x=0,
移項、合并得,3x=1,
系數(shù)化為1得,x=
1
3
;

(3)3(x-1)-2×3=-x-(-2)×1,
去括號得,3x-3-6=-x+2,
移項、合并得,4x=11,
系數(shù)化為1得,x=
11
4
點評:本題考查了一元一次方程的解法,代數(shù)式的求值,根據(jù)新定義的運算方法列出算式或關于x的一元一次方程是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

仔細想一想,聰明的你一定能完成下列問題.
閱讀下列材料:
1
2
(1-
1
3
)=
1
1×3
,
1
2
(
1
3
-
1
5
)=
1
3×5
,
1
2
(
1
5
-
1
7
)=
1
5×7
,…,
1
2
(
1
99
-
1
101
)=
1
99×101
,
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
99
-
1
101
)
=
1
2
(1-
1
101
)
=
50
101

回答下列問題:
(1)在和項
1
1×3
+
1
3×5
+
1
5×7
+…
中第7項是
 
,第n項是
 
;
(2)你能運用類似方法求出
1
2×4
+
1
4×6
+
1
6×8
…+
1
2006×2008
的值嗎?請你試一試;
(3)若αn、βn(其中n為不小于3的正整數(shù))滿足αnn=-(2n+1),αn•βn=n2,請你運用上述知識求
1
(α3+1)(β3+1)
+
1
(α4+1)(β4+1)
+…+
1
(α100+1)(β100+1)
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•房山區(qū)一模)閱讀下面材料:
如圖1,已知線段AB、CD相交于點O,且AB=CD,請你利用所學知識把線段AB、CD轉移到同一三角形中.
小強同學利用平移知識解決了此問題,具體做法:
如圖2,延長OD至點E,使DE=CO,延長OA至點F,使AF=OB,連接EF,則△OEF為所求的三角形.
請你仔細體會小強的做法,探究并解答下列問題:
如圖3,長為2的三條線段AA′,BB′,CC′交于一點O,并且∠B′OA=∠C′OB=∠A′OC=60°;
(1)請你把三條線段AA′,BB′,CC′轉移到同一三角形中.(簡要敘述畫法)
(2)連接AB′、BC′、CA′,如圖4,設△AB′O、△BC′O、△CA′O的面積分別為S1、S2、S3,則S1+S2+S3
3
(填“>”或“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料?:
問題:如圖1,在等邊三角形ABC內有一點P,且PA=2,PB=
3
,PC=1.求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
李明同學的思路是:將△BPC繞點B順時針旋轉60°,畫出旋轉后的圖形(如圖2).連接PP′,可得△P′PB是等邊三角形(可證),而△PP′A又是直角三角形(由勾股定理的逆定理可證).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.進而把AB放在Rt△APB(可證得)中,用勾股定理求出等邊△ABC的邊長為
7
.問題得到解決.?
[思路分析]首先仔細閱讀材料,問題中小明的做法總結起來就是通過旋轉固定的角度將已知條件放在同一個(組)圖形中進行研究.旋轉60度以后BP就成了BP′,PC成了P′A,借助等量關系BP′=PP′,于是△APP′就可以計算了.
解決問題:
請你參考李明同學旋轉的思路,探究并解決下列問題:
如圖3,在正方形ABCD內有一點P,且PA=
5
,BP=
2
,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

請你仔細閱讀下列材料:

計算:

        

根據(jù)你對所提供的材料的理解,選擇合適的方法計算:

查看答案和解析>>

同步練習冊答案