科目:初中數學 來源: 題型:
如圖,四邊形ABCD是平行四邊形,E,F為對角線AC上兩點,連接ED,EB,FD,FB.給出以下結論:①BE∥DF;②BE=DF;③AE=CF.請你從中選取一個條件,使∠1=∠2成立,并給出證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
對坐標平面內不同兩點A(x1,y1)、B(x2,y2),用|AB|表示A、B兩點間的距離(即線段AB的長度),用‖AB‖表示A、B兩點間的格距,定義A、B兩點間的格距為‖AB‖=|x1﹣x2|+|y1﹣y2|,則|AB|與‖AB‖的大小關系為( 。
| A. | |AB|≥‖AB‖ | B. | |AB|>‖AB‖ | C. | |AB|≤‖AB‖ | D. | |AB|<‖AB‖ |
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,點D在邊AC上且BD平分∠ABC,設CD=x.
(1)求證:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°﹣cos72°的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,AB是⊙O的直徑,點C在⊙O上,CD與⊙O相切,BD∥AC.
(1)圖中∠OCD= °,理由是 ;
(2)⊙O的半徑為3,AC=4,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com