如圖1,在平面直角坐標系中,O為坐標原點,P是反比例函數圖象上任意一點,以P為圓心,PO為半徑的圓與坐標軸分別交于點A、B.
(1)求證:線段AB為⊙P的直徑;
(2)求△AOB的面積;
(3)如圖2,Q是反比例函數圖象上異于點P的另一點,以Q為圓心,QO為半徑畫圓與坐標軸分別交于點C、D,求證:DO·OC=BO·OA.
(1)證明見解析;(2)24;(3)證明見解析.
【解析】
試題分析:(1)∠AOB=90°,由圓周角定理的推論,可以證明AB是⊙P的直徑;(2)將△AOB的面積用含點P坐標的表達式表示出來,容易計算出結果;(3)對于反比例函數上另外一點Q,⊙Q與坐標軸所形成的△COD的面積,依然不變,與△AOB的面積相等.
試題解析:(1)∵∠AOB=90°,且∠AOB是⊙P中弦AB所對的圓周角,
∴AB是⊙P的直徑.
(2)設點P坐標為(m,n)(m>0,n>0),
∵點P是反比例函數(x>0)圖象上一點,∴mn=12.
如圖,過點P作PM⊥x軸于點M,PN⊥y軸于點N,則OM=m,ON=n.
由垂徑定理可知,點M為OA中點,點N為OB中點,
∴OA=2OM=2m,OB=2ON=2n.
∴.
(3)若點Q為反比例函數(x>0)圖象上異于點P的另一點,
參照(2),同理可得:.
∴,即.
∴DO•OC=BO•OA.
考點:1.反比例函數綜合題;2.曲線上點的坐標與方程的關系;3.圓周角定理;4.垂徑定理.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數學 來源:同步輕松練習 八年級 數學 上 題型:059
學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規(guī)定填寫下表:
(2)根據表中的數據,將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.
(3)請你猜一猜上述各點會在某一個函數圖象上嗎?如果在某一函數圖象上,求出該函數的解析式,并利用你探求的結果,求出當n=10時,s的值.
查看答案和解析>>
科目:初中數學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數學試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對稱問題時發(fā)現:
如圖1,當點為旋轉中心時,點繞著點旋轉180°得到點,點再繞著點旋轉180°得到點,這時點與點重合.
如圖2,當點、為旋轉中心時,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,小明發(fā)現P、兩點關于點中心對稱.
(1)請在圖2中畫出點、, 小明在證明P、兩點關于點中心對稱時,除了說明P、、三點共線之外,還需證明;
(2)如圖3,在平面直角坐標系xOy中,當、、為旋轉中心時,點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com