(2002•鹽城)已知⊙O的直徑為4,A為直線L上一點,AO=2,則L與⊙O的位置關系是   
【答案】分析:根據(jù)垂線段最短,得圓心到直線的距離小于或等于2,再根據(jù)數(shù)量關系進行判斷.
若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.
解答:解:根據(jù)題意可知,圓的半徑r=2.
因為OA=2,當OA⊥l時,直線和圓是相切的位置關系;
當OA與直線l不垂直時,則圓心到直線的距離小于2,所以是相交的位置關系.
故L與⊙O的位置關系是:相交或相切.
點評:主要考查了直線與圓的位置關系.特別注意AO不一定是圓心到直線的距離.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•鹽城)已知:如圖,在平面直角坐標系中,過點A(0,2)的直線AB與以坐標原點為圓心,為半徑的圓相切于點C,且與x軸的負半軸相交于點B.
(1)求∠BAO的度數(shù);
(2)求直線AB的解析式;
(3)若一拋物線的頂點在直線AB上,且拋物線的頂點和它與x軸的兩個交點構成斜邊長為2的直角三角形,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年江蘇省鹽城市中考數(shù)學試卷(解析版) 題型:解答題

(2002•鹽城)已知:如圖,在平面直角坐標系中,過點A(0,2)的直線AB與以坐標原點為圓心,為半徑的圓相切于點C,且與x軸的負半軸相交于點B.
(1)求∠BAO的度數(shù);
(2)求直線AB的解析式;
(3)若一拋物線的頂點在直線AB上,且拋物線的頂點和它與x軸的兩個交點構成斜邊長為2的直角三角形,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《三角形》(08)(解析版) 題型:解答題

(2002•鹽城)已知:如圖,在梯形ABCD中,AB∥CD,E、F為AB上兩點,且AE=BF,DE=CF,EF≠CD.
求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年江蘇省鹽城市中考數(shù)學試卷(解析版) 題型:選擇題

(2002•鹽城)已知α為銳角,且cos(90°-α)=,則α的度數(shù)是( )
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:初中數(shù)學 來源:2002年江蘇省鹽城市中考數(shù)學試卷(解析版) 題型:填空題

(2002•鹽城)已知:如圖,圓內(nèi)接四邊形ABCD中,∠BAD=65°,則∠BCD=    度.

查看答案和解析>>

同步練習冊答案