如圖,以BC為直徑的⊙O1與⊙O2外切,⊙O1與⊙O2的外公切線交于點D,且∠ADC=60°,過B點的⊙O1的切線交其中一條外公切線于點A.若⊙O2的面積為π,則四邊形ABCD的面積是       

 

【答案】

12

【解析】解:∵⊙O2的面積為π,

∴⊙O2的半徑是1,

∵AB和AH是⊙O1的切線,

∴AB=AH,

設⊙O2的半徑是R,

連接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,

∵⊙O1與⊙O2外切,⊙O1與⊙O2的外公切線DC.DA,∠ADC=60°,

∴D.O2、O1三點共線,∠CDO1=30°,

∴∠DAO1=60°,∠O2EC=∠ECF=∠CFO2=90°,

∴四邊形CFO2E是矩形,

∴O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,

∴DO2=2O2E=2,∠HAO1=60°,R+1=2(R﹣1),

解得:R=3,

即DO1=2+1+3=6,

在Rt△CDO1中,由勾股定理得:CD=3

∵∠HO1A=90°﹣60°=30°,HO1=3,

∴AH==AB,

∴四邊形ABCD的面積是:×(AB+CD)×BC=×(+3)×(3+3)=12

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以BC為直徑的⊙O交△CFB的邊CF于點A,BM平分∠ABC交AC于點M,AD⊥BC于點D,AD交BM于點N,ME⊥BC于點E,AB2=AF•AC,cos∠ABD=
35
,AD=12.
(1)求證:△ANM≌△ENM;
(2)求證:FB是⊙O的切線;
(3)證明四邊形AMEN是菱形,并求該菱形的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•浦口區(qū)一模)如圖,以BC為直徑的⊙O與△ABC的另兩邊分別相交于點D、E.若∠A=70°,BC=2,則圖中陰影部分面積為
7
18
π
7
18
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•澄海區(qū)模擬)如圖,以BC為直徑的⊙O與△ABC的另兩邊分別相交于點D、E.若∠A=60°,BC=2,則圖中陰影部分的面積為
π
3
π
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•眉山)如圖,以BC為直徑的⊙O與△ABC的另兩邊分別相交于點D、E.若∠A=60°,BC=4,則圖中陰影部分的面積為
4
3
π
4
3
π
.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•攀枝花)如圖,以BC為直徑的⊙O1與⊙O2外切,⊙O1與⊙O2的外公切線交于點D,且∠ADC=60°,過B點的⊙O1的切線交其中一條外公切線于點A.若⊙O2的面積為π,則四邊形ABCD的面積是
12
3
12
3

查看答案和解析>>

同步練習冊答案